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Outline

◮ Simple example

◮ Monte Carlo simulations using Techila Grid

◮ The calibration of GARCH models with a large set of
empirical option prices
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Example: Prime numbers

◮ Calculate the prime numbers from the interval
[

107 + 1, 107 + n107
]

=
[

107 + 1, 107(n + 1)
]

,

where n is a positive integer.
◮ For n = 1, it takes more than 250 seconds, and hence, e.g. for

n = 10, it takes a loooong time.
◮ MATLAB code:
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Example: Prime numbers

◮ We can divide the original interval into several, say m,
subintervals:

1.
[

107 + 1, 107(n/m + 1)
]

2.
[

107(n/m + 1) + 1, 107(2× n/m + 1)
]

3.
[

107(2× n/m + 1) + 1, 107(3× n/m + 1)
]

4.
[

107(3× n/m + 1) + 1, 107(4× n/m + 1)
]

5. . . .

◮ That is, the kth, k = 1, 2, . . . ,m, subinterval is

[(

107
(

(k − 1)
n

m
+ 1

)

+ 1
)

,
(

107
(

k
n

m
+ 1

))]

.
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Example: Prime numbers

◮ We can calculate the primes of the each subinterval
separately, and then collect the results.

◮ That is, we can divide the problem into m independent
subtasks and time-consuming calculations can be run on
different computational units (“cores”), with no need for
communication between the subtasks.

◮ Ideally the speedup is nearly linear, i.e. proportional to the
number of cores, m.

Worker 1 Worker 2 Worker m

[ Subinterval 1,  Subinterval 2,  …,         Subinterval m ]
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Example: Prime numbers
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Example: Prime numbers

Results with n = 10 and m = 400:
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Monte Carlo Methods and Distributed Computing

◮ Monte Carlo simulation has become an essential tool in
financial engineering

◮ GARCH models and other volatility models without
(semi-)closed-form expressions for options

◮ Exotic options
◮ LIBOR models
◮ Risk measures

◮ Variance-reduction techniques can reduce the number of
Monte Carlo simulations needed to achieve a given accuracy
and computing speed for a certaint point, but not necessarily
enough.

◮ On the other hand, Monte Carlo computations can naturally
be divided into independent subtasks, and thus the distributed
computing is applicable.
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Our Research Related on Distributed Computing

◮ Stochastic Volatility, Dividends, and Stock Market Equilibrium

◮ Calibration of GARCH Models using Particle Filter

◮ Calibration Strategies of Stochastic Volatility Models

◮ Calibrated Stochastic Volatility Models and Exotic Options

◮ Volatility Feedback in Option Data: Empirical GARCH
Analysis
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Introduction to GARCH Option Pricing

◮ A very important feature of stock returns is conditional
heteroscedasticity, which means that the variability (volatility)
of the returns changes in time. That is, there are more and
less uncertain times in the financial markets.

◮ The family of GARCH (generalized autoregressive conditional
heteroscedasticity) volatility models capture the empirical
properties well, which makes them important tools in
empirical asset pricing and risk management.

◮ The goal of this presentation is to show how the performance
of GARCH models can be assesed using distributed
computing.
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Introduction to GARCH Option Pricing

◮ Lately, GARCH models have been applied to option pricing
with a good success.

◮ The main advantage of GARCH models is that the volatility
dynamics can be characterized in imaginative ways. In fact,
the family of GARCH models amounts to an infinite state
space setups.

◮ However, there is a drawback: In most GARCH option pricing
models, no closed-form analytical solution for the option price
is available and the price is available only through Monte
Carlo simulation.

◮ This makes the model calibration computationally expensive,
even if we use variance reduction techniques (EMS, control
variates etc.)
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Introduction to GARCH Option Pricing

Some related articles:

◮ Christoffersen P. and K. Jacobs, 2004, “Which GARCH Model
for Option Valuation,” Management Science, 50, 9

◮ Barone-Adesi, G., R. Engle, , L. Mancini, 2008, “A GARCH
Option Pricing Model with Filtered Historical Simulation”,
Review of Financial Studies, 21, 1223-1258

◮ Mercuri, L, 2008, “Option pricing in GARCH model with
tempered stable innovations,” Finance Research Letters, 5,
172-182.
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GARCH Models

◮ The stock log-return process is assumed to have a form

ln

(

St

St−1

)

= r + λ
√

ht −
1

2
ht +

√

htzt ,

where r , λ > 0 and zt ∼ N(0, 1),E
[

ztj ztk
]

= 0 for j 6= k .
Here ht denotes the conditional squared volatility.

◮ The volatility process evolves as

ht = β0 +

p
∑

i=1

βiht−1 +

p+q
∑

i=p+1

βi f (zt−1, ht−1) ,

where p, q ≥ 1.
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GARCH Models under Risk-Neutral Probability Measure

◮ Under the risk-neutral probability measure, the corresponding
return and volatility processes are

ln

(

St

St−1

)

= r −
1

2
ht +

√

htz
∗

t ,

and

ht = β0 +

p
∑

i=1

βiht−1 +

p+q
∑

i=p+1

βi f
(

z∗t−1 − λ, ht−1

)

,

where z∗ ∼ N(0, 1) under the risk-neutral probability measure.
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Some Specific GARCH Models (under the risk-neutral
measure)

◮ Leverage model:

ht = β0 + β1ht−1 + β2ht−1

(

z∗t−1 − λ− θ
)2

= β0 + β1ht−1 + β2ht−1

(

z∗t−1 − β∗

3

)2
,

where β∗

3 = β3 + λ.

◮ HGARCH (news&power):

ht = β0 + β1ht−1 + β2ht−1

(
∣

∣z∗t−1 − β∗

3

∣

∣− κ
(

z∗t−1 − β∗

3

))2γ
.
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Calibration of Option Pricing Models

◮ For the purpose of option pricing, it may be preferable to
estimate parameters of the underlying model directly using the
empirical observations of option prices. This procedure is
called calibration.

◮ The task is to find GARCH parameters θ that minimizes the
empirical pricing error (the objective function of our
optimization problem):

min
θ

√

√

√

√

1

n

n
∑

i=1

(

Ĉi − Ci (θ)
)2

,

where n is the number of observations, Ĉi an observed market
price, and Ci (θ) the corresponding model price with GARCH
parameter vector.
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Calibration of Option Pricing Models

◮ For example, in the case of the leverage model there are four
parameters to estimate:

θ = (β0, β1, β2, β
∗

3)
T

◮ HGARCH model has six unknown parameters:

θ = (β0, β1, β2, β
∗

3 , κ, γ)
T.
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Data

◮ We have option data for Wednesdays from 1990 to 1995 (the
data sets were graciously provided to us by Prof. Peter
Christoffersen and Prof. Gurdip Bakshi).

◮ The three year period between January 3, 1990, and
December 31, 1992, is used for in-sample calibration. This
data set consists of 9,176 data points.

◮ We use multi-day option prices to calibrate the parameters,
and thus we ’update’ the volatilities on different dates using
the time series of stock returns, as Christoffersen and Jacobs
(2004) do.

◮ One year period between January 6, 1993, and December 31,
1994, is used for out-of-the-sample testing. This data set
consists of 3,578 data points.
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Optimization Algorithms on Grid: Nelder-Mead

Worker 1 Worker 2 Worker m

Option 

contract 1

Option 

contract 2

Option 

contract n

Empirical 

Prices
RMSE

Parameters

Trading days, Strikes, Maturities, Spots

Change the values of the parameters in order to 

minimize RMSE

Next iteration
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Calibration with the Distributing Computing

◮ We use 50,000 paths, antithetic variables, and also the
empirical martingale simulation procedure proposed by Duan
and Simonato (1998) to increase numerical efficiency. See
also Duan and Simonato (2001).

◮ The use of Nelder-Mead algorithm (MATLAB: fminsearch)
requires 300 – 1,000 iterations (depending on the specified
tolerances) to minimize the pricing error sufficiently.

◮ Therefore, with our accuracy, the calibration of the leverage
model could take about 800 - 1,200 hours of CPU time, but
with Techila Grid, the total time is 3-6 hours.
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Option Price Surfaces, Leverage, In-Sample

0.8
0.9

1
1.1

1.2

0
100

200
300

0

0.05

0.1

0.15

0.2

0.25

Strike/Spot

beta
0
 = 5.1516e−007;  beta

1
 = 0.8827;  beta

2
 = 0.0145;  beta

3
 = 2.658;  RMSE = 1.0681

Days to maturity

C
al

l p
ric

e 
/ S

po
t

Figure: Finished calibration. Option price observations and model prices
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Option Price Surfaces, Leverage, Out-of-Sample
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Figure: Out-of-Sample Fit. Option price observations and model prices
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Some Results

Parameters: Leverage HGARCH

β0 5.1517e-007 3.30E-07
β1 0.88268 0.8590
β2 0.014546 0.1690
β∗

3 2.6581 2.2606
γ 0.7260
κ -0.6270

RMSE in sample 1.0496 0.9835
RMSE out-of sample 1.34705 1.1884
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Thank you for your attention!
Question?

Email: juho.kanniainen@tut.fi, juho.kanniainen@techila.fi
Mobile: +358-40-7074532
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