GPU COMPUTATIONS IN HETEROGENEOUS GRID ENVIRONMENTS

Marcus Hinders
This thesis describes how the performance of job management systems on heterogeneous computing grids can be increased with Graphics Processing Units (GPU). The focus lies on describing what is required to extend the grid to support the Open Computing Language (OpenCL) and how an OpenCL application can be implemented for the heterogeneous grid. Additionally, already existing applications and libraries utilizing GPU computation are discussed.

The thesis begins by presenting the key differences between regular CPU computation and GPU computation from which it progresses to the OpenCL architecture. After presenting the underlying theory of GPU computation, the hardware and software requirements of OpenCL are discussed and how these can be met by the grid environment. Additionally a few recommendations are made how the grid can be configured for OpenCL. The thesis will then discuss at length how an OpenCL application is implemented and how it is run on a specific grid environment. Attention is paid to details that are impacted by the heterogeneous hardware in the grid.

The theory presented by the thesis is put into practice by a case study in computational biology. The case study shows that significant performance improvements are achieved with OpenCL and dedicated graphics cards.

Keywords: grid job management, OpenCL, CUDA, ATI Stream, parallel programming
Preface

The research project, of which this thesis is a product, was a collaboration between Åbo Akademi University and Techila Technologies Ltd. I would like to thank for the assistance and guidance provided by professor Jan Westerholm and PhD student Ville Timonen at Åbo Akademi. I would also like to thank CEO Rainer Wehkamp and R&D Director Teppo Tammisto of Techila Technologies for their support during the research project.
CONTENTS

Abstract i
Preface ii
Contents iii
List of Figures v
List of Tables vii
List of Algorithms viii
Glossary ix

1 Introduction 1

2 GPU computation 3
 2.1 Graphics cards as computational devices 4
 2.2 Frameworks 6
 2.3 Algorithms suitable for the GPU 7
 2.3.1 Estimating performance gain 8

3 Grid and OpenCL architecture 9
 3.1 Techila Grid architecture 9
 3.2 OpenCL architecture 11
 3.2.1 Platform model 11
 3.2.2 Execution model 13
 3.2.3 Memory model 14
 3.2.4 Programming model 15

4 Grid client requirements and server configuration 16
 4.1 Hardware requirements 16
 4.2 Software requirements 18
 4.2.1 Operating system constraints 20
 4.3 Grid server configuration 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Libraries and applications utilizing GPU computation</td>
<td>24</td>
</tr>
<tr>
<td>5.1</td>
<td>Linear algebra libraries</td>
<td>24</td>
</tr>
<tr>
<td>5.2</td>
<td>Matlab integration</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Implementing a Techila Grid OpenCL application</td>
<td>28</td>
</tr>
<tr>
<td>6.1</td>
<td>Local control code</td>
<td>28</td>
</tr>
<tr>
<td>6.2</td>
<td>OpenCL worker code</td>
<td>31</td>
</tr>
<tr>
<td>6.2.1</td>
<td>OpenCL host code</td>
<td>31</td>
</tr>
<tr>
<td>6.2.2</td>
<td>OpenCL kernels</td>
<td>38</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Profiling and debugging</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>Case study</td>
<td>44</td>
</tr>
<tr>
<td>7.1</td>
<td>The Gene Sequence Enrichment Analysis method</td>
<td>44</td>
</tr>
<tr>
<td>7.2</td>
<td>Parallelization with OpenCL</td>
<td>46</td>
</tr>
<tr>
<td>7.3</td>
<td>Test environment</td>
<td>52</td>
</tr>
<tr>
<td>7.4</td>
<td>Test results</td>
<td>53</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Overall comparison of performance</td>
<td>54</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Comparison of OpenCL performance</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>Conclusions</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Swedish summary</td>
<td>68</td>
</tr>
<tr>
<td>A</td>
<td>Appendices</td>
<td>73</td>
</tr>
<tr>
<td>A.1</td>
<td>Case study execution times</td>
<td>73</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Development of peak performance in GPU:s and CPU:s in terms of billions of floating point operations per second (GFLOPS) [1] 4
2.2 Differences in GPU and CPU design. Green color coding is used for ALUs, yellow for control logic and orange for cache memory and DRAM [2] 5
3.1 Techila Grid infrastructure [3]. .. 10
3.2 Techila Grid process flow [4]. .. 10
3.3 OpenCL platform model [5]. .. 12
3.4 Example of a two dimensional index space [5]. 13
3.5 OpenCL memory model [5]. .. 15
4.1 The OpenCL runtime layout. ... 19
6.1 Techila grid local control code flow [6]. 29
6.2 Example of OpenCL host code flow. 33
7.1 Execution times of GSEA algorithm implementations on Worker 2 when the length of L is increased and $m = 500$. The OpenCL implementations utilize the GPU. 55
7.2 Execution times of GSEA algorithm subsections on Worker 2 when the length of L is increased and $m = 500$. The OpenCL implementations utilize the GPU. 56
7.3 Execution times of GSEA algorithm implementations on Worker 2 when the size of S is increased and $n = 15000$. The OpenCL implementations utilize the GPU. 56
7.4 Execution times of GSEA algorithm subsections on Worker 2 when the size of S is increased and $m = 500$. The OpenCL implementations utilize the GPU. 57
7.5 Total execution times of the GSEA algorithm OpenCL implementations on different GPUs when the length of L is increased and $m = 500$. 58
7.6 Subsection execution times of the GSEA algorithm OpenCL implementations on different GPUs when the length of L is increased and $m = 500$. 59
7.7 Total execution times of the GSEA algorithm OpenCL implementations on different GPUs when the size of S is increased and $n = 15000$. 60

7.8 Subsection execution times of GSEA algorithm OpenCL implementations on different GPUs when the size of S is increased and $n = 15000$. 60
LIST OF TABLES

2.1 Indicative table of favorable and non-favorable algorithm properties. . 7
4.1 Hardware accessible under different operating systems [7, 8]. 20
7.1 Test environment grid workers . 53
A.1 Execution times of GSEA algorithm implementations on Worker 2 when the length of L is increased and m = 500. The OpenCL implementations utilize the GPU. Execution times are given in seconds. . 73
A.2 Execution times of GSEA algorithm subsections on Worker 2 when the length of L is increased and m = 500. The OpenCL implementations utilize the GPU. Execution times are given in milliseconds. 73
A.3 Execution times of GSEA algorithm implementations on Worker 2 when the size of S is increased and n = 15000. The OpenCL implementations utilize the GPU. Execution times are given in seconds. . 74
A.4 Execution times of GSEA algorithm subsections on Worker 2 when the size of S is increased and m = 500. The OpenCL implementations utilize the GPU. Execution times are given in milliseconds. 74
A.5 Total execution times of the GSEA algorithm OpenCL implementations on different GPUs when when the length of L is increased and m = 500. Execution times are given in seconds. 74
A.6 Subsection execution times of the GSEA algorithm OpenCL implementations on different GPUs when the length of L is increased and m = 500. Execution times are given in milliseconds. 75
A.7 Total execution times of the GSEA algorithm OpenCL implementations on different GPUs when the size of S is increased and n = 15000. Execution times are given in seconds. 75
A.8 Subsection execution times of the GSEA algorithm OpenCL implementations on different GPUs when the size of S is increased and n = 15000. Execution times are given in milliseconds. 75
List of Algorithms

<table>
<thead>
<tr>
<th></th>
<th>Pseudocode of GSEA</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pseudocode of <code>calculateES</code> function</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Pseudocode of the <code>ismember</code> function</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Pseudocode of optimized <code>ismember</code> function</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>Pseudocode of Knuth’s shuffle</td>
<td>49</td>
</tr>
</tbody>
</table>
GLOSSARY

CUDA
Compute Unified Device Architecture is a hardware architecture and a software framework of Nvidia, enabling GPU computation.

ATI Stream
ATI Stream is AMD’s hardware architecture and OpenCL implementation enabling GPU computation.

OpenCL
Open Computing Language is a non-proprietary royalty free GPU computing standard.

NDRange, global range
A index space defined for the work to be done. The index space dimensions are expressed in work-items.

work-group
A group of work-items.

work-item
A light-weight thread executing kernel code.

kernel
A function that is executed by a compute device.

host device
Device that executes the host code that controls the compute devices.

compute device
A device that executes OpenCL kernel code.
compute unit
A hardware unit, consisting of many processing elements, that executes a work-group.

processing element
A hardware unit that executes a work-item.

grid client, grid worker
A node in a computational grid that performs jobs assigned to it.

grid server
A server that distributes jobs to grid clients and manages them.

grid job
A small portion of an embarassingly parallel problem executed by a worker.

worker code
An application binary that is to be executed on a worker.

local control code
Code that manages the grid computation and is executed locally.
1 Introduction

In high performance computing there is a constant demand for increased computational processing power as applications grow in complexity. A lot of research is done in the field of high performance computing and from that research new technologies such as Graphics Processing Unit (GPU) computing have emerged. GPU computing is gaining increasing interest due to its great potential. Because GPU computing is a relatively new technology it is not always clear however when it could be used and what kind of problems will gain from its usage. This thesis tries to bring light on this matter. The main obstacle for deploying GPU computation today is the new way of thinking required by the application developer. Most developers are accustomed to single threaded applications, but even those who are familiar with parallel programming using the Open Multi-Processing (OpenMP) or Message Passing Interface (MPI) application programming interfaces (API) will notice significant differences in architecture and way of programming. Due to these differences this thesis will present the Open Compute Language (OpenCL) and how an OpenCL application is implemented. This is done as part of a greater endeavor to investigate how a commercially available grid job management system, the Techila grid, can be extended to support GPU computation. The thesis assumes a grid with heterogeneous GPU hardware, but will not discuss any modifications of the grid middleware. The hardware and software requirements presented by this thesis and the usefulness of GPU computation in the Techila grid is assessed in practice through a case study.

Chapter 2 of this thesis gives an overlook of GPU computation. The key differences between CPUs and GPUs are presented as well as different frameworks and their origin. This chapter provides also a general view on what kind of algorithms are suited for GPU computation. Chapter 3 presents the architecture of the Techila grid and OpenCL in order to give a basic understanding of the system structure needed in chapter 6. OpenCL support is not an integrated part of the Techila grid or the majority of operating systems. Chapter 4 describes in detail which steps have to be taken in
order to extend a grid to support OpenCL. This chapter also presents the constraints that prevent the use of OpenCL in some cases. Chapter 6 is dedicated to describing how an OpenCL application that is to be run on the grid should be implemented and how the OpenCL grid computation can be managed. The performance of an OpenCL implementation compared to a regular C language implementation and a Matlab implementation is evaluated in chapter 7, where a set of tests are performed as part of a case study. Chapter 8 will discuss the findings of this thesis.
2 GPU COMPUTATION

In the past a common approach to increase the processing power of a Central Processing Unit (CPU) was to increase the clock frequency of the CPU. After some time the heat dissipation became a limiting factor for this approach and CPU manufacturers changed their approach to the problem by adding computational cores to their CPUs instead of increasing the clock frequency. Desktop computers today commonly have 2-6 computational cores in their CPU. The next major step in increasing the computational power will most likely be heterogeneous or hybrid computing. Heterogeneous computing is a term used for systems utilizing many different kinds of computational units for computations. These computational units could be CPUs, hardware accelerators or Graphics Processing Units (GPU), to mention a few. When one or more GPUs and CPUs are used in combination to perform general purpose calculations it is called GPU computing. In the literature the more established term General Purpose computing on GPUs (GPGPU) is also commonly used as a synonym for GPU computing. Some sources use GPGPU as the term for general purpose computing mapped against a graphics application programming interfaces (API) such as DirectX or OpenGL [1]. In this thesis the term GPU computing will be used instead of the slightly indefinite GPGPU.

The first section of this chapter will present the main differences between a CPU and a GPU from a hardware point of view. The second section will discuss the evolution of GPU computing software frameworks. The third and final section presents different aspects of GPU computation that should be considered before parallelizing code for the GPU. The final section also reminds the reader of the general methods that can be used to estimate the speedup factor achieved by parallelizing an algorithm.
2.1 Graphics cards as computational devices

GPU computing has gained momentum during the past years because of the massively parallel processing power a single GPU contains compared to a CPU. A single high end graphics card currently has roughly ten times the single precision floating point processing capability of a high end CPU while the price is roughly the same. The processing power of the CPUs has increased according to Moore’s law [9], but it is outpaced by the GPUs’ increase in processing power. Figure 2.1 depicts the tremendous increase in GPU processing power since the year 2002.

![Figure 2.1: Development of peak performance in GPUs and CPUs in terms of billions of floating point operations per second (GFLOPS) [1].](image)

Another aspect working in the favor of the graphics cards is their low energy consumption compared to their processing power. For instance an AMD Phenom II X4 CPU operating at 2.8 GHz has a GFLOPS to Watts ratio of 0.9 while a mid-class ATI Radeon 5670 GPU has a ratio of 9.4 [10].

GPUs deploy a hardware architecture that Nvidia calls Single Instruction Multiple Thread (SIMT) [2]. Modern x86 CPUs deploy a Single Instruction Multiple Data (SIMD) architecture that issues the same operation on data vectors. The focal point
of the SIMT architecture is the thread that executes operations, while the SIMD architecture is focused around the data vectors and performing operations on them [11]. In the SIMT architecture groups of lightweight threads execute in lock-step a set of instructions on scalar or vector datatypes. The groups of lightweight threads are called warps or wavefronts. The term warp is used in reference to CUDA and consists of 32 threads, while a wavefront consist of 64 threads and is used in connection with the ATI Stream architecture. All threads in the group have a program counter and a set of private registers that allow them to branch independently. The SIMT architecture also enables fast thread context switching which is the primary mechanism for hiding GPU Dynamic Random Access Memory (DRAM) memory latencies. GPUs and CPUs differ in their design primarily by the different requirements imposed upon them. Graphics cards are first and foremostly intended for graphics objects and pixel processing that requires thousands of lightweight hardware threads, high memory bandwidth and little control flow. CPUs on the other hand are mostly designed with sequential general purpose processing in mind. CPUs have few hardware threads, large cache memories to keep the memory latency low and advanced control flow logic. New CPUs sold on today’s market have commonly 4-12 MB of cache memory in three levels while the best graphics cards have less than 1 MB of cache in two levels [12]. The cache memory and the advanced control flow logic require a lot of space on a silicon die, which in the GPU is used for additional arithmetic logical units (ALU). The schematic of figure 2.2 shows the conceptual differences in processing unit design.

Figure 2.2: Differences in GPU and CPU design. Green color coding is used for ALUs, yellow for control logic and orange for cache memory and DRAM [2].
2.2 Frameworks

At the end of the 1990s graphics cards had fixed vertex shader and pixel shader pipelines that could not be programmed [1]. This changed however with the release of DirectX 8 and the OpenGL vertex shader extension in 2001. Pixel shader programming capabilities followed a year later with DirectX 9. Programmers could now write their own vertex shader, geometry shader and pixel shader programs. The vertex shader programs mapped vertices, i.e. points, into a two dimensional or three dimensional space, while geometry shader programs operated on geometric objects defined by several vertices. The pixel shader programs calculate the color or shade of the pixels. At this time programmers that wanted to utilize the massively parallel processing power of their graphics cards to express their general purpose computations in terms of textures, vertices and shader programs. This was not particularly easy nor flexible and in November 2006 both Nvidia and ATI released their proprietary frameworks specifically aimed for GPU computing. Nvidia named its framework Compute Unified Device Architecture (CUDA) [13]. The CUDA framework is still today under active development and used in the majority of GPU computations. Besides the OpenCL API, CUDA supports four other APIs: CUDA C, CUDA driver API, DirectCompute and CUDA Fortran. CUDA C and CUDA driver APIs are based upon the C programming language. DirectCompute is an extension of graphics API DirectX and CUDA Fortran is a Fortran based API developed as a joint effort by Nvidia and the Portland Group. ATI’s framework was called Close-to-the-metal (CTM) which gave low-level access to the graphics card hardware [14]. The CTM framework later became the Compute Abstract Layer (CAL). In 2007 ATI introduced a high-level C-based framework called ATI Brook+ which was based upon the BrookGPU framework developed by Stanford University. The BrookGPU framework was a layer built on top of graphics APIs such as OpenGL and DirectX, to provide the programmers high-level access to the graphics hardware and was thus the first none-proprietary GPU computing framework. ATI Brook+ however used CTM to access the underlying hardware.

In 2008 both Nvidia and AMD joined the Khronos group in order to participate in the development of an industry standard for hybrid computing. The proposal for the royalty free Open Computing Language (OpenCL) standard was made by Apple Inc. and version 1.0 of the OpenCL standard was ratified in December 2008 and is the only industry standard for hybrid computing to date. OpenCL version 1.1 was released in August 2010. In this thesis GPU Computing is discussed from the OpenCL
perspective because it is better suited for grid environments. The CUDA Driver API and the OpenCL API are very similar to their structure and many of the concepts discussed in this thesis apply also to CUDA C and the CUDA driver API.

2.3 Algorithms suitable for the GPU

Table 2.1 shows an indicative list of favorable and non-favorable algorithm properties from the GPU’s point of view. The GPU is well suited for solving embarrassingly parallel problems due to its SIMT architecture. Embarrassingly parallel problems are problems that can be divided into independent tasks that do not require interaction with each other. Data can however be shared to a limited extent between threads on a GPU, but the threads should have as few data dependencies to each other as possible. The sharing of data between threads is explained in more detail in section 3.2.3.

The most important aspect in terms of performance is high arithmetic logical unit utilization. The factor that most significantly impacts GPU utilization is diverging execution paths, i.e if-else statements. When threads within a warp or wavefront diverge, the different execution paths are serialized. An algorithm with many divergent execution paths will thus not perform well on a GPU. Another factor that affects the ALU utilization is the graphics card DRAM memory access patterns. A scattered data access pattern will start many fetch operations that decrease performance as graphics cards have small or no cache memories. It is also beneficial if the algorithm is computationally intensive as this will hide the graphics card DRAM access latencies.

<table>
<thead>
<tr>
<th>Favorable property</th>
<th>Non-favorable property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embarrassingly parallel</td>
<td>Many divergent execution paths</td>
</tr>
<tr>
<td>Computationally intensive</td>
<td>Input/Output intensive</td>
</tr>
<tr>
<td>Data locality</td>
<td>High memory usage (> 1GB)</td>
</tr>
<tr>
<td></td>
<td>Recursion</td>
</tr>
</tbody>
</table>

Table 2.1: Indicative table of favorable and non-favorable algorithm properties.

The memory resources of graphics cards are limited. When an application has allocated all graphics card DRAM the data is not swapped to central memory or the hard disk drive as with regular applications. Furthermore when the data is transferred from central memory to dedicated graphics cards it has to pass through the Peripheral Component Interconnect Express (PCIe) bus, that has a theoretical transfer rate of 8
GBps [10]. Due to this low bandwidth of the PCIe bus compared to the graphics card DRAM and central memory it becomes a performance limiting factor and therefore transfers over the PCIe bus should be kept to a minimum [15]. From this it follows that input and output intensive algorithms are not suited for GPU computation as they will cause intensive data transfers on the PCIe bus. Additional non-favorable properties are file and standard input or output operations that cannot be performed by code running on the GPU.

2.3.1 Estimating performance gain

Amdahl’s law given by equation 2.1 presents a means to estimate the speed-up S of a fixed sized problem [11]. $T(1)$ is the execution time of the whole algorithm on one processor core and $T(N)$ is the execution time of the parallelized algorithm on N processor cores. The execution time $T(N)$ can be expressed as the execution time of the sequential section T_s and the execution time of the parallel section T_p run on one processor core divided by the number of cores N. As a GPU utilizes tens of thousands of lightweight threads for processing the equation can be simplified by having N go to infinity, which yields equation 2.2.

$$S = \frac{T(1)}{T(N)} = \frac{T_s + T_p}{T_s + \frac{T_p}{N}}$$ \hspace{1cm} (2.1)

$$S = \lim_{N \to \infty} \left(\frac{T_s + T_p}{T_s + \frac{T_p}{N}} \right) = 1 + \frac{T_p}{T_s}$$ \hspace{1cm} (2.2)

Amdahl’s law assumes that the number of threads N and the execution time of the parallel section T_p are independent, which is in most cases not true. Gustafson’s law [16] shows that the execution time is kept constant if the problem size and the number of threads are increased. This observation is important in GPU computation where in many cases a larger problem size is more desirable than speeding up a fixed sized problem.
3 GRID AND OPENCL ARCHITECTURE

This thesis will study the possibilities of utilizing OpenCL in the commercial grid job management system Techila Grid. Other grid middleware such as Boinc and Condor are available, but this thesis focuses solely on the Techila Grid. In this chapter the key concepts of the Techila Grid middleware are presented, starting with a general presentation of the grid and its architecture. The latter half of this chapter is devoted to the OpenCL architecture.

3.1 Techila Grid architecture

The Techila Grid is a middleware developed by Techila Technologies Ltd that enables distributed computing of embarrassingly parallel problems [4]. The computational grid consists of a set of Java based clients, called workers, connected through Secure Sockets Layer (SSL) connections to a server. The connections to the server are made either over the Local Area Network (LAN) or the internet. The clients are platform independent and can be run on laptops, desktop computers or cluster nodes as illustrated by figure 3.1.

The grid process flow can be divided into three tiers: the end-user tier, the management tier and the computation tier. The process flow involving the three tiers is shown in figure 3.2. An embarrassingly parallel problem implemented by the end-user is called a project. Every project uses one or more bundles containing data or compiled executables of the worker code, e.g. an OpenCL application, that are created and uploaded to the grid server by the end-user. The implementation of OpenCL worker code is discussed in detail in chapter 6.2. The bundles are created using the Grid Management Kit (GMK) either directly or indirectly. The grid can be managed indirectly through the Parallel Each (PEACH) [4, p.15] function that takes only a minimal set of input parameters and manages the grid resources on behalf of the end-user. In the
case of OpenCL applications the PEACH function does not however provide the level of configurability needed to overcome the constraints presented in chapter 4, but by managing the resources explicitly through local control code the constraints can be overcome. Section 6.1 discussed the different aspects that have to be considered while implementing the local control code for an OpenCL application.

![Techila Grid infrastructure](image)

Figure 3.1: Techila Grid infrastructure [3].

![Techila Grid process flow](image)

Figure 3.2: Techila Grid process flow [4].

The management tier consists of the grid server, the function of which is to manage the projects, workers and bundles. When a project is created the grid server splits the project into parallel tasks called jobs and distributes them to workers in the grid. The number of jobs is defined by the end-user when the project is created. Every
The project has an executor bundle that contains the worker code to be executed on the workers. The executor bundle can be defined by the end-user to require resources from other bundles, e.g., files from a data bundle. If the bundles required by a project are not available locally, the worker will download the required bundles from the grid server. In cases where the bundle is large, point-to-point transmissions can be used to distribute the bundle to all the workers needing it. Every bundle created by the end-user is stored on the grid server.

The management tier and the computational tier consisting of the workers are never directly exposed to a regular end-user. The grid server has however a graphical user interface (GUI) that can be accessed with a web browser. A regular end-user may view information about the grid, e.g., his projects, bundles, and grid client statistics. An administrator can configure the grid server and grid client settings through the GUI. Among the things an administrator can do is to assign client features and create client groups. The benefits of the two functionalities are discussed in section 4.3.

3.2 OpenCL architecture

In this section, the OpenCL architecture is presented in terms of the abstract models defined in the OpenCL specification [5]. The OpenCL specification defines four different models: the platform model, the memory model, the execution model, and the programming model. It is important to understand these models before writing worker code that uses OpenCL.

3.2.1 Platform model

An OpenCL platform consists of a host and one or more compute devices [5]. An OpenCL application consists of two distinct parts: the host code and the kernel. The host code is run on a host device, e.g., a CPU, and it manages the compute devices and resources needed to execute kernels. The host device may also function as a OpenCL compute device. A function written for a compute device, e.g., an accelerator, a CPU or a GPU, is called a kernel. The OpenCL application must explicitly define the number and type of OpenCL compute devices to be used. The GPU is better suited for data parallel problems than the CPU, which is well suited for task parallelism. The concepts of data parallel and task parallel computation are explained in section 3.2.4.
Each compute device is comprised of several compute units and each OpenCL compute unit contains a collection of processing elements. When discussing CPUs the compute units are commonly known as cores. In Nvidia GPUs the compute units are called Streaming Multiprocessors and the processing elements are called CUDA cores [2]. In AMD GPUs the compute units were previously called SIMD Engines. A SIMD engine is comprised of Stream Cores that contain 5 processing elements each [10].

Figure 3.3: OpenCL platform model [5].

The OpenCL standard has different versions and this has to be taken into consideration when writing portable code. The runtime and hardware may provide support for different versions of the OpenCL standard and as such the programmer must check that the OpenCL platform version, compute device version and compute device language version are adequate. The platform version is the version supported by the OpenCL runtime on the host, the compute device version describes the capabilities of the compute devices’ hardware and the compute device language version informs the programmer which version of the API he can use. The compute device language version cannot be less than the compute device version, but may be greater than the compute device version if the language features of the newer version are supported by the card through extensions of an older version. The compute device language version cannot be queried in OpenCL version 1.0.

Every version of the OpenCL API has two profiles, the full profile and the embedded profile. The embedded profile is a subset of the full profile and intended only for portable devices.
3.2.2 Execution model

Every OpenCL application has to define a context that contains at least one command queue for every compute device being used [5]. A command queue is used to enqueue memory operations, kernel execution commands and synchronization commands to a compute device. The commands enqueued can be performed in-order or out-of-order. If more than one command queue is tied to a compute device the commands are multiplexed between the queues.

A thread executing a kernel function is called a work-item. All work-items belong to an N dimensional index space (NDRange), where N is either one, two or three, that models the problem domain. When combined with the parallelism of the grid, one can effectively compute four-dimensional embarrassingly parallel problems. The NDRange is evenly divided into work-groups. A workgroup is a group of work-items that are assigned to the same compute unit. The work-group size S can either be defined explicitly by the programmer or be left to the OpenCL runtime to decide. If the work-group size is defined explicitly the global index space has to be evenly divided by the workgroup size, as shown by figure 3.4 where the two dimensional NDRange of size

![Figure 3.4: Example of a two dimensional index space [5].](image-url)
$G_x \times G_y$ is evenly divided by workgroups of size $S_x \times S_y$.

$$g_x = w_x \times S_x + s_x$$

$$g_y = w_y \times S_y + s_y$$

$$g_z = w_z \times S_z + s_z$$

Every work-item in the NDRange can be uniquely identified by its global id, which is the work-item’s coordinates in the NDRange. In addition every work-group is assigned a work-group id and every work-item within the work-group a local id. The relation between the global IDs (g_x, g_y, g_z), the workgroup IDs (w_x, w_y, w_z) and the local IDs (s_x, s_y, s_z) are shown by equations 3.1, 3.2 and 3.3. The global-, local- and work-group IDs are made available to the work-item during kernel execution through OpenCL C function calls.

3.2.3 Memory model

The memory model has a hierarchical structure, where the memory is defined to be either global, local, constant or private [5]. Figure 3.5 shows the memory model of an OpenCL compute device. The global memory can be written and read by both the host device and the compute device, and memory objects can be allocated in either the host devices’ memory space or the compute devices’ memory space. Memory objects allocated in local memory however, that is usually located on-chip, is accessible only to work-items belonging to the same work-group. The private memory space consisting of registers is accessible only to the work-item that has allocated the registers. The private memory space is by default used for scalar objects defined within a kernel. Non-scalar memory objects are by default stored in the global memory space. Constant memory is similar to global memory but it cannot be written by the compute device. The local and private memory cannot be accessed by the host device, but local memory can be statically allocated through kernel arguments.

All memory used by kernels has to managed explicitly in OpenCL. Transferring data between host memory and device memory can be done explicitly or implicitly by mapping a compute device memory buffer to the host’s address space. OpenCL memory operations can be blocking or non-blocking. OpenCL uses a relaxed memory consistency. This means that the programmer has to ensure that all necessary memory oper-
Data hazards are avoided by explicitly defining synchronization points within kernels and command queues. No built-in mechanism exists however for synchronizing work-groups with each other.

3.2.4 Programming model

OpenCL supports two different programming models, i.e the data parallel model and the task parallel model [5]. Data parallel programming model utilizes the index spaces defined in OpenCL to map a work-item to some set of data. OpenCL does not however require a strict one to one mapping as some data parallel frameworks do.

In the task parallel model the NDRange consist only of one work-item. This is analogous to that of executing sequential code. The task parallel programming model is intended to draw its benefits from being able to execute many kernels simultaneously, given that the tasks do not have dependencies on each other. Additional performance gain is achieved by using vector datatypes. The task parallel model is not recommended for GPUs.
4 GRID CLIENT REQUIREMENTS AND SERVER CONFIGURATION

This chapter discusses the general hardware and software requirements placed upon a grid worker for it to be able to run OpenCL applications. It is assumed that the Techila Grid worker is a regular x86 based computer with one or more graphics cards and a console. The last section of this chapter is devoted to the configuration of the Techila grid and to the enhancement of job allocation.

4.1 Hardware requirements

Currently OpenCL applications can be executed on any x86 based CPU with the the Streaming Single Instruction, Multiple Data Extension 2 (SSE2) and a wide variety of AMD and Nvidia GPUs [7]. OpenCL is supported by all 8000 series and newer Nvidia Geforce graphics cards and the ATI Radeon 5000 and newer series dedicated graphics cards [17]. Beta support exists for the ATI Radeon 4000 series dedicated cards. All Nvidia Tesla computing processors and AMD FireStream 9200-series computing processors support OpenCL. An up-to-date list of Nvidia and AMD graphics cards supporting OpenCL, including mobile and professional graphics card models, can be found from [17] and [7].

All graphics cards capable of OpenCL computations do not necessarily provide good performance compared to CPUs. This is particularly true when old graphics cards are compared to CPUs sold today, e.g. an Nvidia Geforce 8400 GS GPU has only one compute unit with 8 processing elements. While each compute unit in an OpenCL capable AMD GPU contains the same amount of processing elements, i.e. 80 processing elements per compute unit, the same does not hold true for Nvidia GPUs [10]. With the shift from the GT200 architecture used by most of the 200-series cards to the Fermi architecture used by the 400 and 500 series cards the amount of processing
elements per compute unit was increased from eight to 32 [2]. Therefore one should not compare Nvidia GPUs to each other based on the number of compute units. This is well exemplified by comparing the Geforce 280 GTX to the Geforce 480 GTX, the first having 30 compute units while the latter has only 14, but despite this the Geforce 480 GTX has twice the number of processing elements.

Some of the old generation GPUs may even lack hardware support for certain functionality. For instance double precision floating point arithmetic is supported only by Nvidia graphics cards based on the Fermi or GT200 architecture [12]. If a Nvidia GPU is lacking support for double precision floating point arithmetic the operations are demoted to single precision arithmetic. All ATI Radeon HD graphics cards in the 4800 and 5800-series support double precision arithmetic through AMD’s proprietary OpenCL extension.

Another aspect to consider when hardware is concerned is memory. A desktop or laptop computer has commonly between 512 MB and 8 GB of DRAM while a typical graphics card has between 64 MB and 1.5 GB of DRAM, i.e. global memory in OpenCL terms. If the OpenCL application has to process a great amount of data on a dedicated graphics card with e.g. only 128 MB of DRAM the application will cause a lot of traffic over the PCIe bus, which is not desirable in terms of performance. It should be noted also that AMD only exposes 50% of the total DRAM in its OpenCL implementation [18]. The limit can be manually overridden, but AMD does not guarantee full functionality if this is done. Graphics cards based on the Fermi architecture, i.e. those having compute capability 2.0, have read-only L1 and L2 caches that are used by the runtime to speed up private- and global memory reads. Every compute unit in the Fermi architecture has 64kB on-chip memory that is divided between the L1 cache and local memory. Two thirds of the memory size is used for local memory and the rest for the L1 cache. The L2 cache is larger than the L1 cache and shared by all compute units. The AMD GPUs have L1 and L2 caches but those are only used for texture and constant data and provide no significant performance gain in GPU computing [10]. Non-Fermi Nvidia cards have also texture and constant caches. In some circumstances better utilization of the GPU may be achieved by using Direct Memory Access (DMA) transfers between host and device memory. DMA transfers are performed by independent hardware units on the GPU and allow simultaneous copying and computation. Nvidia calls these hardware units copy engines and every graphics card with compute capability 1.2 or higher has a copy engine and devices with com-
pute capability 2.0 or higher have two copy engines [15]. Each copy engine is able to perform one DMA transfer at a time. The AMD OpenCL implementation is currently not capable of performing DMA transfers.

Special computing processors such as the AMD FireStream and Nvidia Tesla processors are intended solely for GPU computation [19, 20]. These cards tend to have greater amounts of DRAM and features that are not needed in desktop graphics cards such as Error-Correcting Code (ECC) applied to on-chip memory and device memory. For instance the AMD FireStream provides up to 2 Gb of DRAM and the Tesla 2000-series cards provide up to 6 GB of DRAM.

4.2 Software requirements

A compiled OpenCL application will need the OpenCL runtime to execute on a grid worker. The runtime consists of the OpenCL library and one or more OpenCL drivers. The drivers are mostly vendor specific and provide support for a certain set of hardware. Nvidia has included its implementation of the OpenCL 1.0 runtime library in its display driver package from release 190 onwards [8]. This means that every worker with a CUDA capable graphics card and an up-to-date display driver has the capability to run OpenCL applications. At the moment of writing OpenCL 1.1 support is available only through release candidate development drivers.

With the Catalyst 10.10 display driver AMD introduced the Accelerated Parallel Processing Technology (APP) edition display driver package that includes the AMD OpenCL runtime implementation. The APP edition display driver is currently only available for Windows, but an APP edition of the Linux display driver package is planned for year 2011 [21]. To run OpenCL applications on AMD graphics cards under Linux the ATI Stream SDK, which also includes the OpenCL library and driver, has to be installed. This applies also to Windows workers without the APP edition display driver.

The Nvidia OpenCL driver supports only the vendor’s own lineup of graphics cards, while the AMD OpenCL driver supports all x86 based CPU with SSE2 and the company’s own lineup of graphics cards. Many implementations of the OpenCL runtime may co-exist on a worker because of the Installable Client Driver (ICD) model, which is used by both Nvidia and AMD OpenCL runtime implementations [22]. In the ICD model an OpenCL driver registers its existence in a common location
which is checked by all drivers using the ICD model. In Windows the OpenCL drivers are registered under HKEY_LOCAL_MACHINE/SOFTWARE/Khronos/OpenCL/Vendors by specifying a registry key with the driver library’s filename. In Linux the registration is done by placing a file, with the file extension icd, under /etc/OpenCL/vendors containing the driver’s filename. The Nvidia display driver installer registers the OpenCL driver automatically under Windows and Linux. The ATI Stream SDK registers the AMD OpenCL client driver automatically under Windows, but under Linux an additional package has to be downloaded and extracted for the driver to become registered [23]. If the different OpenCL drivers have been correctly installed, the preferred OpenCL platform can be chosen using the `clGetPlatformIDs` OpenCL API call.

Techila Grid provides the option to manage runtime libraries by creating library bundles that can be distributed to the workers in the grid [4]. The OpenCL runtime is however dependent of the graphics card drivers installed on the worker, which makes it poorly suited for this type of centralized model of library management. For instance the OpenCL 1.1 driver supplied with ATI Stream SDK 2.2 requires Catalyst driver suite
version 10.9 in order to work correctly as the OpenCL driver depends on the Compute Abstraction Layer (CAL) runtime embedded in the display driver package [7, 10]. Dependencies between the OpenCL runtime implementations and the display drivers are not documented in detail by the vendors and therefore it cannot be guaranteed that runtimes packaged in library bundles will function correctly on all workers. Even if the library bundles were used, local management would still be required for workers with both AMD and Nvidia graphics cards because of the ICD model.

4.2.1 Operating system constraints

Both Nvidia and ATI provide their OpenCL runtime for Windows and Linux operating systems, but due to certain implementation decisions a Techila Grid worker cannot run OpenCL applications on all the operating systems listed as supported by Nvidia or AMD. Table 4.1 shows a list of operating systems and the hardware resources that are accessible by the worker through the vendor specific OpenCL drivers.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>AMD GPU</th>
<th>Nvidia GPU</th>
<th>x86 CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fedora 13</td>
<td>Yes²</td>
<td>Yes</td>
<td>Yes²</td>
</tr>
<tr>
<td>openSUSE 11.2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ubuntu 10.04</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 5.5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Desktop 11 SP1</td>
<td>Yes²</td>
<td>Yes</td>
<td>Yes²</td>
</tr>
<tr>
<td>Windows 7</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Windows Vista</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Windows XP</td>
<td>Yes¹</td>
<td>Yes</td>
<td>Yes¹</td>
</tr>
<tr>
<td>Windows Server 2003, 2008</td>
<td>No²</td>
<td>Yes</td>
<td>Yes²</td>
</tr>
<tr>
<td>Mac OS X 10.6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 4.1: Hardware accessible under different operating systems [7, 8].

Under Windows the Techila Grid Client runs as a service under a dedicated user account. When OpenCL support is considered this becomes a limiting factor on some versions of Windows. Microsoft changed the way regular processes and services are handled from Windows Vista and Windows Server 2008 onwards [24]. In operating systems until Windows XP and Windows Server 2003 all services run in the same

¹SP3 required for the 32-bit operating system. Beta support for 64-bit operating system requires SP2
²Not officially supported
session as the first user that logs on to the console. In an effort to improve security Microsoft decided to move the services to a separate non-interactive session. This change is commonly known as session 0 isolation. The aim of this change was to make it more difficult for malicious software to exploit vulnerabilities in services that run with higher privileges. The services running in session 0 are assumed to be non-interactive and have therefore no access to the display driver. From this it follows that no OpenCL application utilizing the GPU can be run by the worker.

The only exception to the previously mentioned rule is the Nvidia Tesla series GPU computational cards [25]. The Tesla display driver has a mode called Tesla Compute Cluster (TCC). When this mode is engaged processes in session 0 can access the graphics hardware for computational purposes on Windows operating systems otherwise affected by session 0 isolation. The TCC mode does not support drawing of 2D or 3D graphics, i.e. the graphics card cannot be attached to a display if the TCC mode has been engaged. All non-Tesla Nvidia graphics cards will be demoted to VGA-adapter when TCC-mode is engaged. The driver supporting TCC-mode is available for all Windows operating systems listed in table 4.1.

Windows XP and newer Windows operating systems monitor the responsiveness of the graphics driver. If the graphics driver does not respond within a certain time limit Windows considers the driver unresponsive and tries to reset the display driver and graphics hardware. In Windows XP the graphics card is monitored by a watchdog timer and the default timeout is 2 seconds [23]. In Windows Vista and Windows 7 the feature is called Timeout Detection and Recovery (TDR) [26] and the timeout is 5 seconds. When performing OpenCL calculations on the GPU these time limits may be exceeded by computationally intensive kernels which will cause the display driver to be reset. When a display driver is reset the kernel is forced to interrupt without storing any results. From a computational point of view this is undesired behavior and therefore these features should be disabled. The TDR functionality can be disabled by creating REG_DWORD TdrLevel in HKEY_LOCAL_MACHINE/ SYSTEM/CurrentControlSet/Control/GraphicDrivers with value 0 in the registry. To disable the Windows XP display driver watchdog timer the REG_DWORD DisableBugCheck with value 1 has to be inserted at HKEY_LOCAL_MACHINE/SYSTEM/ CurrentControlSet/Control/Watchdog/Display in the registry. Workers with ATI graphics cards should also disable VPU Recovery as explained in [23]. Microsoft advises against disabling these features.
Similar restrictions as those caused by session 0 isolation exist under Linux for the AMD OpenCL implementation. CAL accesses the graphics card hardware through the existing interfaces of the X server [27]. The grid client runs as a process under a dedicated user account that does not have an X server running. Access to the console’s X session can however be gained by modifying the X server access control list and allowing the grid user to read and write to the graphics card device nodes. One way of achieving this is to add the following two lines to the XDM or GDM initialization scripts that are run as root. The XDM setup script, located at etc/X11/xdm/Xsetup, is used by both the KDE and X window managers. The GDM initialization script is located at /etc/gdm/Init/Default. In addition to these two settings the environmental variable DISPLAY with value :0 has to added to the run environment.

```
chmod a+rw /dev/ati/card *

xhost +LOCAL:
```

The Nividia OpenCL runtime does not require that the X server settings are modified, but the grid client user account has to have read and write access to the device nodes. Similarly to the AMD systems access rights may be granted through the XDM or GDM initialization scripts.

```
chmod a+rw /dev/nvidia *
```

4.3 Grid server configuration

The grid workers can be coarsely divide into those capable of OpenCL computations and those not capable of OpenCL computations. This sort of division is a good starting point with regard to job allocation but not necessarily the best when performance is concerned. By default the grid server has no knowledge what kind of graphics hardware or which runtime components a worker has. If this information is not registered in any way jobs will be allocated to workers without runtime components or hardware that supports GPU computation. If a job is allocated to a worker without OpenCL support the worker code will fail to execute and the grid will reallocate the job. Many errors caused by lacking OpenCL support can cause a project to fail if 90% of the jobs belonging to the project fail once or 10% of the jobs fail twice. The probability of project failure can however be eliminated by assigning features to the grid clients.

The first step in enhancing the job allocation would be to form a client group of
OpenCL capable workers, i.e. workers with the runtime components and GPUs supporting OpenCL. Every worker would then be guaranteed to execute at least some part of the OpenCL application assigned to them. OpenCL is an evolving standard and as such every worker is not guaranteed to support the same set of OpenCL features, e.g. sub-buffers are supported by OpenCL 1.1 but not by OpenCL 1.0. These differences can be taken into account by assigning the clients a feature that tells the OpenCL runtime version installed on that worker. Beside the core functionality every OpenCL version has a set of optional extensions. The OpenCL application can query these at runtime, but a better option would be to store the supported extensions as features. This way an OpenCL project using e.g. 64-bit atomic operations could be directly allocated to compatible workers.

In addition to the software requirements a set of hardware features can be assigned to clients. Nvidia defines a value called compute capability for every Nvidia graphics card supporting GPU computation. This value has a major number followed by a decimal point and a one digit minor number. The compute capability value is used to describe the characteristics of the graphics hardware and is the same for all graphics cards based on the same architecture. The compute capability can be queried during runtime using Nvidia’s proprietary OpenCL extension cl_nv_device_attribute_query. AMD does not have any similar value that describes the hardware capabilities of their graphics cards. Instead the AMD graphics cards can be divided according to their hardware architecture. All dedicated graphics cards with the same leading number in their model name have the same hardware characteristics. Knowing the hardware architecture could be used to optimize the worker code or to simply discard workers with graphics cards that perform poorly in some specific task. An example of such a situation would be to discard Nvidia GPUs with compute capability 1.0 or 1.1 when the OpenCL kernel exhibits unaligned memory access patterns. Graphics cards with the mentioned compute capabilities cannot detect unordered accesses to a section of memory and may in the worst case cause as many fetch operations on the same section of memory as there are threads in the half-warp [2].
OpenCL is a young standard and as such there are few evolved tools that are based on it. When compared to CUDA, the lack of vendor specific optimized libraries currently limits the adoption of OpenCL in scientific applications. Optimized CUDA libraries exists for fast Fourier transforms (FFT), linear algebra routines, sparse matrix routines and random number generation. While these kinds of libraries can be expected for OpenCL in the future the current offering is scarce. On a side note it should however be observed that every grid client with an Nvidia GPU capable of OpenCL computations can be made capable of executing applications and libraries based on C for CUDA. This chapter will primarily focus on libraries and application that use OpenCL, but also discusses some CUDA based products.

5.1 Linear algebra libraries

The Vienna Computing Library (ViennaCL) is a Basic Linear Algebra (BLAS) library OpenCL implementation developed by the Institute for Microelectronics of the Vienna University of Technology [28]. Currently ViennaCL supports level one and two BLAS functions, i.e. vector-vector operations and matrix-vector operations, in single and double precision, if supported by hardware. Level three operations, i.e. matrix-matrix operations, will be added in future releases. ViennaCL’s primary focus is on iterative algorithms and as such ViennaCL provides interfaces for conjugate gradient, stabilized biconjugate gradient and generalized minimum residual iterative methods. ViennaCL is a header library that incorporates the OpenCL C kernel source codes inline. A compiled application using the ViennaCL library can therefore be executed on any grid client with the OpenCL runtime. If the current functionality of ViennaCL is not sufficient the user can implement his own OpenCL kernels that extend the ViennaCL
library. Section 5 of the ViennaCL user manual [28] provides instructions on how to extend the library.

CUBLAS is a BLAS library utilizing Nvidia GPUs [29]. It is included in the CUDA Toolkit that is available for Linux, Windows and OS X operating systems. CUBLAS uses the CUDA runtime but does not require the end-user to directly interact with the runtime. The CUBLAS library provides all three levels of BLAS functions through its own API. CUBLAS supports single precision floating point arithmetic and also double precision arithmetic if the hardware is compatible. Using the CUBLAS library in the grid will require the creation of library bundles that contain the CUBLAS library file, e.g. `cublas.so`, against which the application is linked at compilation. The CUDA driver is installed with the display drivers but the CUDA runtime library, e.g. `cudart.so`, has to be made available through a library bundle. It should be noted however that the CUBLAS, CUDA runtime, and CUDA driver libraries have to be of the same generation to ensure full compatibility, i.e. the workers’ display drivers should be of the version specified in the CUDA toolkit release notes and the CUDA runtime and CUBLAS libraries should be from the same CUDA toolkit release.

CULA is a commercial third party *Linear Algebra Package* (LAPACK) implementation from EM Photonics Inc [30]. The basic version of CULA is available free of charge but it provides only single precision accuracy. CULA provides two C language interfaces for new developers, a *standard* interface that uses the host memory for data storage and a *device* interface that uses the graphics card’s DRAM for storage. The standard interface is aimed at those end-users not familiar with GPU computation. When the *standard* interface is used all transfers between host and device memory are hidden by CULA. An interface called *bridge* is provided, in addition to the *standard* and *device* interfaces. The *bridge* interface is intended to ease the transition from popular CPU based LAPACK libraries to CULA by providing matching function names and signatures. The *bridge* interface is built on top of the *standard* interface. CULA is provided as a dynamic library that uses the CUDA runtime library and the CUBLAS library. All the before mentioned libraries are provided with the install packages. Similarly to CUBLAS these libraries have to be made available to the worker executing a CULA application. All the CULA specific information needed for creating a Techila grid library bundle is made available through the CULA programmer’s guide in the installation package. The CULA install package is available for Windows, Linux and OS X.
5.2 Matlab integration

The Techila Grid uses the Matlab compiler and the Matlab compiler runtime to execute Matlab source code on the grid. The Matlab source code is compiled by the end-user with the Matlab compiler. The binary is then packaged in a binary bundle that is defined to have a dependency on the Matlab compiler runtime, and uploaded to the grid server. The Matlab compiler runtime is made available to grid clients through a library bundle. When a job that uses the Matlab binary bundle is received by a grid client it will notice the dependency and use the Matlab compiler runtime library bundle to execute the binary. In general there are three ways to utilize GPU computation in Matlab. The first way is to use the Matlab 2010b Parallel Computing Toolbox, the second way is to use the Matlab Executable (MEX) external interface and the third way is to use third party add-ons.

The built-in GPU support in the Matlab 2010b Parallel Computing Toolbox is based on the CUDA runtime, but restricted in functionality [31]. Matlab provides function calls that utilize the CUDA FFT library but otherwise only the most basic built-in Matlab functions can be directly used through Matlab’s GPUArray interface. The built-in GPU computing interfaces are not supported by the Matlab compiler, which hinders their usage in Techila Grid.

The low level approach is to use MEX external interface functions that utilize OpenCL. ViennaCL has a distribution where the MEX interfaces are already implemented [32]. The only thing that remains for the end-user is to compile the MEX files and use them in a Matlab application. At this time the developers of ViennaCL recommend using their solvers over the ones in Matlab only for systems with many unknowns that require over 20 iterations to converge. The ViennaCL library uses row major order for its internal matrices, while Matlab uses column major order. This forces ViennaCL to transform the input and output data which causes a performance penalty. Additionally Matlab uses signed integers while ViennaCL uses unsigned integers. It is also possible to implement custom MEX functions that utilize OpenCL. Matlab Central [33] provides a good tutorial for writing MEX-functions in the C language. OpenCL code incorporated in a MEX-function does not differ from the program flow shown in figure 6.2. A few aspects should however be kept in mind. All input and output data should go through the MEX interface. As Matlab uses by default double precision floating point values the host code should check that the GPU being used supports double precision arithmetic and if not convert the values to single precision.
To enhance the portability of the MEX function the OpenCL C kernel code should be written inline.

Jacket is a third party commercial add-on to Matlab developed by AccelerEyes [34]. Jacket is built on top of the MEX interface that is used to interact with CUDA based GPU libraries, e.g. the CUBLAS and CUFFT library. AccelerEyes provides a product called Jacket Matlab Compiler (JMC) that uses the Matlab compiler in combination with the Jacket engine to produce binaries that can be deployed independently. The Jacket Matlab compiler binaries are executed with the Matlab compiler runtime and do not therefore differ from any other Matlab binary that is executed on the grid. To create non-expiring Jacket Matlab applications that can be run on the grid the base license and a Jacket Matlab compiler license are required. Double precision LAPACK is available at additional cost. A grid client deploying a Jacket Matlab compiler binary does not require a license.
6 Implementing a Techila Grid OpenCL application

This chapter uses a top-down approach to describe how an OpenCL application and the local control code should be implemented so that the OpenCL application can be executed on the grid. Please read chapter 3 before reading this chapter.

6.1 Local control code

The Techila local control code differs only little from regular projects not performing OpenCL GPU computation. The local control code can be implemented in any of the supported programming languages, e.g. Java, C, Python, etc. The local control code flow is depicted in figure 6.1. The programming language specific syntax is explained in [6].

In the simplest case the grid is initialized, a session is opened, a binary bundle is created, the bundle is uploaded and a project using the bundle is created [6]. There are however a few key aspects that have to be taken into account when creating the binary bundle for an OpenCL application if the OpenCL C source code is stored in a separate source file instead of being embedded in the OpenCL application binary. If a separate source file is used this file has to be specified as an internal resource and included in the binary bundle’s file list. In addition the source file has to be copied to the execution directory at runtime. This can be done with the bundle parameter *copy*.

Workers that use the ATI Stream Software Development Kit (SDK) libraries have to be instructed where to look for the library files because the SDK libraries are not installed to any of the default system library locations. A linux worker can locate the OpenCL libraries required at runtime if the LD_LIBRARY_PATH environmental variable is set to point to the folder with the *libOpenCL.so* file. The simplest way to export the LD_LIBRARY_PATH environmental variable to the workers runtime...
Figure 6.1: Techila grid local control code flow [6].
environment is by using the bundle parameter `environment`. Using an absolute path as value for the environmental variable would however require that the SDK has been installed to the same path on every worker. This restriction can be bypassed by storing the OpenCL library path as a client feature and using the `%A` macro when specifying the value of `LD_LIBRARY_PATH`. A Windows worker will find the necessary AMD library files as long as the grid is not instructed to override the local system variables. If the grid has Linux workers with AMD GPUs the `DISPLAY` variable with value `:0` has to be exported to the execution environment so that any requests from the OpenCL runtime are directed to the correct X server. Section 4.2.1 describes in more detail about the AMD X session constraints. Nvidia and AMD provide both 32-bit and 64-bit OpenCL drivers in their display driver and SDK packages for 64-bit operating systems. Therefore there is no need to add operating system constraints to a binary bundle containing a 32-bit OpenCL application binary. When dealing with 64-bit OpenCL application binaries, the executable should be constrained to 64-bit operating systems only using the `processor` parameter.

One may either choose to include possible input data files in the binary bundle or create a separate data bundle. When all bundles have been created, a binary bundle is selected to be used and a project is created. Current limitations in GPU hardware allow for only one OpenCL context to be active at the GPU at any given moment [12]. When several applications are using the same GPU the GPU’s resources are time sliced. The time slicing is done by context switching. If many computationally intensive jobs are allocated to the same worker and they all use the same OpenCL compute device, there is a risk that the compute device becomes overloaded. If a GPU is under heavy computational load all graphics drawing might become sluggish at the console. This applies especially to cards with low performance and is not desirable. The number of jobs utilizing the same GPU can be restricted by setting the project parameter `techila_multithreading` to true. This will ensure that only one job will be running at each worker assigned to the project.

To avoid unnecessary job allocations to workers without OpenCL hardware and runtime components it is recommended that the workers are assigned features or divided into groups as explained by section 4.3. When this approach is used the local management code has to tell the grid server which worker group is to be used for the project and which features are required from the workers. The client group is selected by giving the client group name as value to parameter `techila_client_group` when the
project is created. Any features required by the OpenCL application can be enforced with the `techila_client_features` project parameter. The features can be specified to be equal, greater or equal, less than or equal to a value or any value. If some feature is not enforced by the local management code the worker code has to check that this feature is supported by the platform and the compute device at runtime using `clGetPlatformInfo` and `clGetDeviceInfo` OpenCL API calls.

6.2 OpenCL worker code

This chapter will describe the process of writing a cross-platform compatible OpenCL application. An OpenCL application can be divided into two components: the host code and the kernel code. The steps in implementing the OpenCL host code are explained with the help of a flow graph. The OpenCL API and OpenCL C syntax is not discussed in detail as it is well documented in [5]. It is recommended that the OpenCL application is developed, tested and proven functional locally before running it on the grid. Before reading further it is strongly recommended that the reader has read chapter 3.2 and understood the key concepts of the OpenCL architecture presented in that chapter.

When developing OpenCL applications on a Windows or Linux computer a software development kit such as the NVIDIA GPU Computing SDK or the ATI Stream SDK has to be installed. Note that the NVIDIA GPU Computing SDK will require the development version of the ForceWare display driver. Besides containing all the necessary library and header files the SDKs contain sample programs, utility libraries and vendor specific documentation. If the development is done in OS X the development tools package has to be installed. On Unix platforms the OpenCL host code can be compiled with the gcc compiler. Under Linux the OpenCL library flag `-lOpenCL` has to be passed to the gcc compiler and in OS X the compiler has to be instructed to use the OpenCL framework by passing the flag `-framework OpenCL` to the gcc compiler. If the application development is done in Windows the compilation can be performed with Microsoft Visual Studio. Detailed instructions how to do this can be found from the programming guides [10] and [2].

6.2.1 OpenCL host code

The purpose of the host codes is to manage the compute devices and the resources they have. This is achieved through the OpenCL API. Experimental C++ bindings exist
for the OpenCL API, but this section will refer to the C language API defined by the OpenCL specification. To use the OpenCL API calls under Windows or Linux one must include the header file CL/cl.h. The OS X operating system uses a slightly different path, OpenCL/cl.h, for the same header file. The include command can be made portable across operating systems by using preprocessor instructions. The OpenCL API is logically divided into two parts, the platform layer and the runtime layer. The platform layer contains commands for discovering OpenCL platforms and compute devices, while the runtime layer has commands for managing kernel functions, queues and memory objects. The platform layer host code varies seldom, while the structure of the runtime layer host code may vary greatly from application to application depending on the problem being solved. The bare minimum of objects needed by an simple OpenCL application is a platform, a context, a device, a command queue, a program, a kernel and and one or more memory buffers as shown by the sample program flow in figure 6.2.

All OpenCL 1.1 API calls except clSetKernelArg are thread safe and in OpenCL 1.0 all API calls except those beginning with clEnqueue are thread safe [5, 35]. Every OpenCL API call returns an error code if the operation in question fails. The possibility that errors occur should always be taken into account by the host code as the hardware might vary greatly from client to client.

Creating a context

The first step in writing the host code is to query the platform ID. A host system might have more than one OpenCL implementation, i.e OpenCL drivers, installed that are all uniquely identified by a platform ID [5]. A common approach to select the preferred platform is to use command clGetPlatformIDs to query the number of platforms available, allocate the space needed for the platforms available and then use clGetPlatformIDs a second time to get the actual platform IDs from which the preferred platform can be selected. In figure 6.2 the default platform’s ID is queried directly. Additional information about the platform such as platform name, vendor, OpenCL version and OpenCL extensions can be queried using the command clGetPlatformInfo.
Figure 6.2: Example of OpenCL host code flow.
The second step is to query the compute devices associated with the platform ID of step one using the \texttt{clGetDeviceIDs} API call. The second argument in \texttt{clGetDeviceIDs} is used to specify what type of OpenCL compute devices are desired. The different types are all, accelerator, CPU, default and GPU. The number of devices associated with a platform can be queried in a similar manner as with the platforms. The API call \texttt{clGetDeviceInfo} can be used to query a wide range of over 50 device properties, a complete list of which can be found in section 4.2 of [5]. The device parameters most commonly needed are device type, supported extensions, maximum work-group size, maximum work-group dimensions, the greatest allowed buffer size, global memory size, global memory cache size, local memory size and the device OpenCL C version.

Every OpenCL runtime layer object is related to a context, either directly or indirectly through some other object. The context can be seen as a container for all objects created by the runtime layer. A platform and the devices belonging to it may be associated with more than one context, but commonly an OpenCL application has only one context. Runtime layer objects cannot be shared by different contexts. A context may be created in two different ways, either by passing one or more compute device IDs as arguments to \texttt{clCreateContext} or by passing the desired compute device type to \texttt{clCreateContextFromType}. If the latter command is used the platform used is OpenCL implementation defined. In that case the platform and devices associated with the context can be queried using \texttt{clGetContextInfo} and \texttt{clGetDeviceInfo}. It should be noted that \texttt{clCreateContextFromType} is not guaranteed to return all available devices of the requested type, hence it is preferable to use \texttt{clCreateContext}.

Creating memory buffers

Because of the hierarchical memory structure of OpenCL special memory objects and operations are needed for reading, writing and copying data. In OpenCL arrays and user defined datatypes have to be allocated in continuous sections of memory. To force this behavior OpenCL has memory buffers. A memory buffer of desired size is allocated in global memory with \texttt{clCreateBuffer} [5]. The memory access of the kernel functions can be restricted by specifying the buffer as read only or write only. By default the buffer is allocated in device memory, but if needed the buffer can be allocated in host memory. A buffer can be allocated in host memory by passing a pointer to a memory segment and the host pointer flag to \texttt{clCreateBuffer}. The \texttt{clCreateBuffer} command can also be instructed to initialize the memory buffer with data from a host.
pointer. If this functionality is used there is no need to copy the host pointer data explicitly to the buffer by invoking `clEnqueueWriteBuffer` as explained in section 6.2.1. If the application being implemented is memory intensive, care should be taken that the global memory size and greatest allowed buffer size limits are not exceeded. These limits can be queried using `clGetDeviceInfo`. It should also be noted that the amount of graphics card DRAM may vary greatly from compute device to compute device. If the limits are exceeded the memory allocation will fail.

Allocating buffers in host accessible memory is desirable when the data is to be processed by the CPU. Using host memory with the GPU as compute device is not desirable as the PCIe bus limits the memory bandwidth considerably compared to the GPUs DRAM bandwidth. With Nvidia graphics cards higher transfer speeds bandwidth over the PCIe bus can be achieved using pinned memory, also known as page locked memory. This feature requires the usage of a specific implementation pattern described in section 3.1 of [15].

Compiling OpenCL kernels

A task that is executed in parallel is called a kernel and many kernels form a program [5]. The term program should not be confused with the term OpenCL application. A program is an object and an OpenCL application is the whole application. An OpenCL program object is created from a C string containing the OpenCL C source code or from a precompiled binary. The OpenCL C source code can be stored as a string in the host code or as a separate source file that is read by the host code. The Nvidia shrUtils and AMD SDKUtils utility libraries in the vendor SDKs include routines for reading the OpenCL C source code file to host memory. A common convention is to store the OpenCL C source code in a file with the cl file extension. The process of writing a kernel is described in section 6.2.2. The program object is created by invoking the `clCreateProgramWithSource` with the source code string as a parameter, in a similar way the program object may be created from a precompiled binary by invoking the `clCreateProgramWithBinary`. The binary codes and device IDs passed as argument to `clCreateProgramWithBinary` must match the hardware architecture or the API call will fail.

OpenCL uses *Just In Time* (JIT) compilation [11]. The OpenCL C compiler is part of the OpenCL driver and cannot as such be invoked offline as traditional compilers. The source code is compiled for the desired compute devices by passing the device
IDs and program to `clBuildProgram`. `clBuildProgram` accepts a set of compiler options such as `-I`, the relative include path to directory with kernel header files. The binaries produced by the compiler are specific to the hardware architectures of the compute devices. The program binaries can be extracted using `clGetProgramInfo`. For Nvidia GPUs the binary returned is *Parallel Thread Execution* (PTX) binary and for AMD GPUs *ATI Intermediate Language* (ATI IL) binary [10, 2]. For better portability it is recommended that the program object is always created from the OpenCL C source code.

Work is sent to compute devices by enqueueing kernels to the command queue. A kernel object is created by passing the kernel name and program object as arguments to `clCreateKernel`. Note that the kernel name is case sensitive. If preferred all kernel objects can be created at once with `clCreateKernelsInProgram`. Before a kernel can be queued for execution however, the kernel arguments have to be set. The kernel arguments are set one at a time with `clSetKernelArgs`. Every kernel argument has an index, i.e. the first argument of the kernel function has index 0 and the Nth has index $N - 1$. Memory buffers and most scalar data types, except those mentioned in section 6.8 of [5], are allowed as kernel arguments.

Memory operations and kernel execution

The command queue structure can be seen as a pipeline that is used to assign work to a compute device. Each compute device that is to be used for computation has to have at least one command queue [5]. If a device has more than one command queue the operations enqueued to the command queues are multiplexed. A command queue is created by passing the context and compute device ID to `clCreateCommandQueue`. A command queue defaults to in-order-execution. Out-of-order execution mode can be enabled by passing the enable out-of-order execution flag to `clCreateCommandQueue`. If out-of-order execution is enabled, events and barriers have to be used to control the order in which operations are performed. An event can be attached to every operation added to the command queue and every command enqueued can be set to wait for one or more events, i.e. operations, to complete. The embedded profiling functionality is enabled by passing the profiling enable flag to `clCreateCommandQueue`. OpenCL 1.0 allows changing the command queue settings after creation with the `clSetCommandQueueProperty`, this command has been deprecated in OpenCL 1.1. Section 6.2.3 discusses the profiling functionality in more detail.
All commands starting with `clEnqueue` are asynchronous calls, i.e. they will return control to the host program immediately. The memory read, write and mapping operations can however be made synchronous by setting the blocking parameter to `true`. Another way of synchronizing the host program thread with the command queue is by using the `clFinish` call. `clFinish` will block the host program thread until all commands enqueue before `clFinish` have been completed.

In a trivial program flow, as that shown in figure 6.2, one or more memory buffers have been created. Data is copied from host memory to the buffers with `clEnqueueWriteBuffer` and from buffer to host memory with `clEnqueueReadBuffer`. Data can also be copied from one buffer to another with `clEnqueueCopyBuffer`. Sometimes it is necessary to modify the buffer data allocated in device memory, e.g. graphics card DRAM, from the host code. Instead of reading the data from the buffer, modifying the data and writing it back to the buffer, the buffer or a section of it may be mapped for reading or writing to the host’s memory space with `clEnqueueMapBuffer`. The pointer returned by `clEnqueueMapBuffer` to the mapped memory region can then be used to access and modify the data in a traditional manner. The content of the memory buffer mapped for writing is considered undefined until the memory segment is unmapped with `clEnqueueUnmapBuffer`. A mapped buffer should not be written to from a kernel or multiple command queues.

When the necessary input and output buffers have been created a kernel can be enqueue for execution with `clEnqueueNDRangeKernel` or `clEnqueueTask`. The first of these is used for data parallel kernels and requires as input the global work size (NDRange), the local work size and dimensionality of the problem. The global work size that naturally follows from some data structure might not always be evenly divided by the workgroup size as required by the runtime. In these cases the global index space is defined as greater than the index space of the data set and the differences in size is handled with conditional statements in the kernel code. As of OpenCL 1.1 `clEnqueueNDRangeKernel` also accepts offset values that are added to the the global x, y and z coordinates. This feature is particular useful if the required global work size is not supported by the compute device, as it allows for the problem to be split into smaller problems. The maximum global work size can be queried with `clGetDeviceInfo`.

For optimal usage of the GPU compute units the global work size should be a multiple of the wavefront size or the warp size, i.e 64 or 32. If the local work-group size is of no significance to the algorithm a null value may be given as input and the runtime
will select a suitable value. Every compute device has a maximum work-group size that cannot be exceeded. The maximum size varies greatly from device to device, but work-group sizes up to 256 are supported by all OpenCL capable AMD GPUs, Nvidia GPUs and x86 CPUs. \texttt{clEnqueueTask} is used to enqueue task parallel kernels, i.e kernels with only one work-item. Concurrent kernel execution is currently supported only by the Nvidia cards based upon the Fermi architecture and hence this form of parallelism is not applicable for GPU computing on a grid [12]. The OpenCL standard specifies also a third type of kernel called native kernel, which is a regular function written in C or C++. This type of kernel would not be compiled by the OpenCL compiler. A native kernel would be enqueued for execution by passing a function pointer to \texttt{clEnqueueNativeKernel}, but currently native kernels can not be executed on AMD or Nvidia GPUs [23, 36]. Native kernels are supported by x86 CPUs.

\section*{Cleanup}

All objects created in the runtime layer should be released before the application exits. The objects should be released in the reversed order that they have been created, i.e kernels are released first and the context as last. Figure 6.2 shows the order in which to release the objects.

\subsection*{6.2.2 OpenCL kernels}

This subsection will shortly present the OpenCL C language and the different aspects that should be taken into account when writing an OpenCL C kernel.

\section*{The OpenCL C language}

The OpenCL C language is based on the ISO/IEC 9899:1999 standard, also known as C99 [5]. The restrictions and capabilities of the OpenCL C language used to write OpenCL kernels are defined by [5] and listed here under. Extended functionality is provided by optional OpenCL extensions [5]. The shortcomings of the programming language can mostly be overcome by alternative implementations.

OpenCL C core functionality not found in C99:

- 32-bit atomic operations
- Built-in vector datatypes
• Built-in vector functions
• Built-in geometric functions

C99 functionality not found in OpenCL C:
• Recursion
• File operations
• Standard I/O operations
• Function pointers
• Bit-fields
• Dynamic memory allocation
• Support for double precision floating point operations

OpenCL C extended functionality not found in C99:
• 64-bit atomic operations
• Built-in double and half precision floating point vectors
• Half precision floating point support

OpenCL C does not support standard C libraries when using a GPU as compute device [5]. The implication of this is that no file or standard I/O operations can be carried out from the kernels running on a GPU and these have to be handled by the host code. The concept of host code is explained in section 3.2.1. Another implication of the missing C library support is that all string operations, such as string compare and string concatenation, have to be implemented by the programmer as needed. OpenCL 1.0 lacks by default support for writing to pointers or arrays of datatypes less than 32-bits, such as characters and short integers. Devices that support the byte addressable store extension by Khronos are not however affected by this restriction. When taking these two factors into consideration OpenCL 1.0 is not well suited for dealing with strings. The byte addressable store extension was adopted as part of OpenCL 1.1.

The missing support for the C99 math library on the other hand is insignificant as OpenCL C provides a better set of built-in functions than the standard C99 library. The built-in math operations can be applied to scalars, built-in vector types or individual components of a vector. Noteworthy groups of special functions are the atomic and geometric functions. The atomic operations are guaranteed to operate on the shared data one work-item at the time, essentially making the accesses sequential. OpenCL 1.1 has built-in support for 32-bit atomic integer operations, but atomic operations on long integers are supported only through the 64-bit atomics extensions. OpenCL 1.0
supports 32- and 64-bit atomic operations only through extensions. The geometric functions include routines for calculating dot products, cross products, vector lengths, vector normals and distances between two points.

The most notable addition compared to standard C are the built-in vector datatypes and the math operations supporting them. The OpenCL vector types are derived from the standard C scalar datatypes and can have a length of 2, 3, 4, 8 or 16 elements, e.g. uchar4, long8, float16, etc. Explicit casting of a built-in vector type to another vector type is not allowed. If the vector datatype has to be changed special conversion functions exist for that. A scalar value may however be explicitly casted to a vector of the same type. In these cases the scalar value is assigned to all components of the vector.

Writing OpenCL C kernels

All kernels except native kernels are written in the OpenCL C language. Those familiar with C programming should have no problem writing a OpenCL C kernel. For a complete list of built-in functions refer to section 6.11 of [5].

Listing 6.1: Example of an OpenCL C kernel

```
#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void vectorAdd(
    __global __read_only double* A,
    __global __read_only double* B,
    __global __write_only double* C
)

    unsigned int length ) {

        int i = get_global_id(0);
        if(i < length) C[i] = A[i] + B[i];
    }
```

A kernel function is identified by its __kernel qualifier. The only allowed return type of a kernel is void i.e. the output data produced by the kernel has to be stored in a memory segment provided as argument to the kernel. Every kernel argument should have an address space qualifier and optionally an access qualifier. The kernel function arguments and variables declared within the function are by default stored in the private memory space. The address space qualifiers are required for arrays and pointers to indicate in which memory space the data is located, i.e. either global, constant or local.
memory space. OpenCL does not allow pointers to pointers or function pointers as kernel arguments. Arrays declared within an OpenCL C function must have a fixed length as variable length arrays are not supported. It is also illegal to mix pointer address spaces, e.g. a pointer stored in local memory cannot be made to point to global memory.

The kernel function code is executed by every work-item in the global range and should be written accordingly. OpenCL C has built-in functions for querying work-group size, work-group thread id and global thread id from within a kernel. A typical usage of the global thread id is demonstrated in listing 6.1, where the thread id is used to access a specific set of data. On AMD GPUs it is beneficial to use vectors and loop unrolling to increase the utilization of the Stream cores that are based on the Very Long Instruction Word 5 (VLIW-5) architecture [10]. In more complex kernel functions using local memory synchronization of work-group threads might be required. For this purpose OpenCL provides the barrier command. The barrier command will block execution until all threads within the work-group have reached the barrier. The barrier has to be placed in such a place that all threads can reach it, e.g. a barrier inside an if-else statement is illegal.

Branch statements should be used sparingly within a kernel function. When threads within a warp or a wave front diverge, the different execution paths are serialized. For an if-else statement this means that all the threads evaluating true for the conditional statement get executed first and only after that the threads that evaluated to false are executed. This behavior is due to the fact that all threads within a warp or wavefront share the same scheduler. Algorithms with many diverging execution paths are thus not optimal. The serializing of the different paths can in some cases be avoided by using branch predication [15].

In some cases it might be desirable to use faster native implementations of floating point math operations that have less accuracy than the standard built-in IEEE 754-2008 compliant versions. Native implementations exist for trigonometric, exponential, logarithm and square root functions. The native implementations are separated from the regular ones with the prefix ’native’. However if high accuracy double precision math operations are needed in the kernel one should check that the double precision floating point extension is supported and enabled. OpenCL extensions used by the kernel code are enabled with using a pragma as shown in 6.1. A specific extension is enabled by specifying its name in the pragma. However the naming convention makes
it better to use the ‘all’ value instead of the specific extension names. Using the ‘all’ value makes the kernel code more portable and less dependent on the runtime version. The AMD double precision floating point extension for instance is called `cl_amd_fp64` while the standard double precision extension is called `cl_khr_fp64` and the atomic extension names slightly differ between OpenCL 1.0 and 1.1.

The kernel’s level of access to some data may be restricted with an access qualifier. If the access qualifiers are left out the access level defaults to read and write access. Besides access and address space qualifiers, OpenCL C allows specifying optional attributes such as required work-group size for kernels and alignment for structures. When using user defined structures OpenCL requires that the developer ensures that the structures are properly aligned. Alignment has to be considered also when casting pointers of aligned datatypes to uneven built-in vector types or sub 32-bit scalar types. When executing kernels on a GPU the access patterns to global memory have great impact on performance because of the nonexistent or very small caches. When using Nvidia GPUs the memory access patterns should be coalesced, i.e. threads of a warp should access subsequent memory positions. For AMD GPUs memory coalescing is not as important as avoiding bank and channel conflicts caused by the threads having a large power of two stride. Coalesced memory access and other global memory optimizations for Nvidia GPUs are explained in detail by section 3.2 in [2]. The impact of bank and channel conflicts are explained by section 4.4 of [10] among other memory optimizations.

The built-in math operations can be applied to scalars, built-in vector types and individual components of a vector. Explicit casting of a built-in vector type to another vector type is however not allowed. If the vector datatype has to be changed special conversion functions exist for that. A scalar value may however be explicitly casted to a vector of the same type. In these cases the scalar value is assigned to all components of the vector.

6.2.3 Profiling and debugging

The OpenCL API has built-in time measurement functionality [5]. The time measurement is done with the help of event objects that can be attached to every API call beginning with `clEnqueue`. The same event objects can be used for synchronization and flow control when out of order execution is enabled. When using events for time measurement, the command queue has to be created with the profiling enabled. An event
object is attached to the operation being profiled. After the operation has completed the start and end times can then be queried by passing the event and the appropriate flag as arguments to `clGetEventProfilingInfo` that returns the device time in nanoseconds. The time is guaranteed to be accurate across different clock frequencies and power states. `clFinish` can be used between the command being profiled and `clGetEventProfilingInfo` to ensure that the command has completed before querying the start and end time. CPU timers can also be used to measure execution times. In these cases `clFinish` is used to synchronize the command queue with the host thread before measuring the end time. Using CPU timers to measure the execution time of one or more operations might give false readings if several command queues are attached to the same device as the operations of these queues are interleaved by the runtime [15].

If the grid or the group of workers being used is known to have a homogeneous set of graphics cards, profilers can be used locally to analyze the performance of the OpenCL application in more detail. This requires however that the local computer used for development has the same graphics card as the grid workers being used. The Nvidia Visual Profiler and the ATI Stream Profiler are available free of charge. Besides providing execution times the profilers gather statistics from the hardware performance counters. The ATI Stream Profiler is an add-on to Microsoft Visual Studio and therefore only available for Windows. The Nvidia Visual Profiler is included in the CUDA Toolkit and is hence available for both Windows and Linux. AMD provides also the standalone ATI Stream KernelAnalyzer software for Windows that can be used to simulate the performance of OpenCL kernels on AMD hardware without having to have the actual hardware.

The OpenCL host code can be debugged using traditional debuggers, but most of these do not work for OpenCL C code. The AMD OpenCL driver allows the usage of GDB [10] to debug kernel code when it is run on the CPU. The specific steps that have to be taken are explained in chapter 3 of [10]. Graphics Remedy is currently developing a version of their gDEBugger [37] software that supports OpenCL. Nvidia is developing ParallelNsight [38], which is an add-on to Microsoft Visual Studio, that provides both profiling and debugging functionalities. Both geDEBugger and ParallelNsight are still in the beta phase.
7 CASE STUDY

The GSEA algorithm was chosen for the case study because of its low complexity and potential to benefit from parallelization. In addition there was general interest in improving the performance of this method.

7.1 The Gene Sequence Enrichment Analysis method

The Gene Sequence Enrichment Analysis (GSEA) is an analytical method developed by the Broad Institute of Massachusetts Institute of Technology for interpreting gene expression data in molecular biology [39]. Unlike the traditional single gene analysis, the GSEA method works on groups of genes. A gene list \(L \) and a gene set \(S \) are created independently of each other. Genes in set \(S \) share common traits that are already known. Gene list \(L \) is ranked according to some suitable metric. The basic idea in GSEA is to analyze if the genes in set \(S \) are uniformly distributed in \(L \) or if they are correlated. If the genes in \(S \) are correlated with \(L \) they will appear mostly toward the end or the beginning of \(L \). The value that is used to describe the correlation is called enrichment score. The higher the enrichment score the higher the correlation. An everyday example of the GSEA algorithm would be to have a list \(L \) with all the people on earth ranked according to wealth and a set \(S \) being the Finnish people. In this case the enrichment score would tell us if the Finns are more or less wealthy than an randomly selected person on earth. The method is presented in more detail in [39].

The pseudocode of the GSEA method is shown by algorithm 1. The algorithm begins by searching for gene identifiers in \(S \) from the ranked list \(L \). This is done by the ismember function that returns a boolean list \(ML \) that has the same length as \(L \). \(ML_i \) has value true if gene identifier \(L_i \) is located in set \(S \) and false other ways. The boolean list \(ML \) returned by ismember is passed to the calculateES function which in turn returns the observed enrichment score \(es \). In order to evaluate the meaning of
Algorithm 1 Pseudocode of GSEA

Require: length(L) > 0, length(S) > 0 and p > 0
1: \(ML \leftarrow \text{ismember}(L, S) \)
2: \(es \leftarrow \text{calculateES}(ML) \)
3: \(vg \leftarrow vl \leftarrow 0 \)
4: \(inc \leftarrow 1/p \)
5: for \(i = 0 \) to \(p \) do
6: \(\text{randperm}(L) \)
7: \(ML \leftarrow \text{ismember}(L, S) \)
8: \(ESP_i \leftarrow \text{calculateES}(M) \)
9: if \(ESP_i > es \) then
10: \(vg \leftarrow vg + inc \)
11: else
12: \(vl \leftarrow vl + inc \)
13: end if
14: end for
15: if \(vl < vg \) then
16: \(p_{val} \leftarrow vg \)
17: else
18: \(p_{val} \leftarrow vl \)
19: end if
20: \(\mu \leftarrow \text{mean}(ESP) \)
21: \(\sigma \leftarrow \text{std}(ESP) \)
22: \(p_{norm} \leftarrow 1 - \text{normcdf}(es, \sigma, \mu) \)

\(es \) a statistical null distribution has to be created. The null distribution is generated by shuffling list \(L \) and recalculating the enrichment score \(p \) times [39]. From the \(p \) enrichment score values \(ESP \) the probability values \(p_{val} \) and \(p_{norm} \) are calculated. The \(p_{val} \) is the nominal probability value and \(p_{norm} \) is the complement of the normal cumulative distribution function. The \(p_{norm} \) value is expressed in terms of the error function and the equation is given in 7.1. The \(\text{normcdf} \) function requires as input the observed enrichment score \(es \), mean value \(\mu \) and the standard deviation \(\sigma \).

\[
p_{norm} = 1 - F(x|\mu, \sigma) = 1 - \frac{1}{2} * (1 + e^{r f\left(\frac{x - \mu}{\sigma \sqrt{2\pi}}\right)}) \quad (7.1)
\]

The function \(\text{calculateES} \) takes the boolean list \(ML \) as argument. The function generates two running sums called true positive rate, \(tpr \), and false positive rate, \(fpr \), from which the enrichment score is calculated. The false positive rate is the probability that the enrichment score of gene identifiers \(0 \) to \(i \) in list \(L \) constitute a false finding.
and vice versa for the true positive rate, \(tpr \). For every true value in \(ML \) the running sum \(tpr \) is incremented and for every false value \(fpr \) is incremented. The \(fpr \) value is subtracted from \(tpr \) in every iteration \(i \) of the loop to gain an enrichment score for gene identifiers \(0 \) to \(i \) in \(L \). If the resulting value is greater than any previous enrichment score, the new value will replace the old \(es \) value.

Algorithm 2 Pseudocode of \(\text{calculateES} \) function

Require: \(\text{length}(M) \geq 0, \text{com} \geq 0 \)

1. \(\text{len} \leftarrow \text{length}(M) \)
2. \(\text{es} \leftarrow \text{tpr} \leftarrow \text{tprPrev} \leftarrow \text{fpr} \leftarrow \text{fprPrev} \leftarrow 0 \)
3. \(\text{for } i = 0 \text{ to } \text{len} \text{ do} \)
 4. \(\text{if } M_i \equiv \text{true} \text{ then} \)
 5. \(\text{tpr} \leftarrow \text{tpr} + 1/\text{com} \)
 6. \(\text{fpr} \leftarrow \text{fprPrev} \)
 7. \(\text{else} \)
 8. \(\text{tpr} \leftarrow \text{tprPrev} \)
 9. \(\text{fpr} \leftarrow \text{fprPrev} + 1/(\text{len} - \text{com}) \)
10. \(\text{end if} \)
11. \(\text{if } |\text{tpr} - \text{fpr}| > |\text{es}| \text{ then} \)
12. \(\text{es} \leftarrow \text{tpr} - \text{fpr} \)
13. \(\text{end if} \)
14. \(\text{tprPrev} \leftarrow \text{tpr} \)
15. \(\text{fprPrev} \leftarrow \text{fpr} \)
16. \(\text{end for} \)
17. \(\text{return } \text{es} \)

7.2 Parallelization with OpenCL

The original GSEA algorithm and test data was received from *Tampereen Teknillinen Yliopisto* (TTY) in Matlab form [40]. The Matlab implementation was programmed in such a manner that both integer identifiers and string identifiers could be used as input. Using the algorithm with string identifiers provided more complexity in comparison to the version using integer identifiers and was therefore selected for the case study. The process of porting the code to OpenCL was two-phased. In the first phase the Matlab code was ported to regular C code. In the second phase the regular C implementation was modified to use OpenCL. This approach was selected for two reasons: the
sequential sections of the regular C implementation could be reused in the OpenCL implementation and the regular C implementation could be used to verify the correctness of the OpenCL implementation from within the same application during runtime.

The Matlab implementation of GSEA utilizes several built-in Matlab routines that had to be implemented in C. Among these built-in routines is `ismember` that is used to identify the elements that are common to both L and S. The documentation for the algorithm used by the Matlab routine could not be found and therefore the algorithms were implemented based on the general description of the `ismember` functionality in the Matlab documentation. Two different versions of `ismember` were implemented that performed very differently. The first version was a straightforward implementation using two nested loops, that takes one element from L_i and compares it to elements in S. If the element L_i is found in S, ML_i is set to true and the inner loop is broken. In the regular C language implementation the comparison of the string identifiers is done using C library function `strcmp`. The GSEA implementation using the straightforward `ismember` function shown in figure 3 will be referred to as the standard C implementation.

<table>
<thead>
<tr>
<th>Algorithm 3</th>
<th>Pseudocode of the <code>ismember</code> function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Require:</td>
<td>length(L) > 0, length(S) > 0</td>
</tr>
<tr>
<td>1:</td>
<td>$n \leftarrow$ length(L)</td>
</tr>
<tr>
<td>2:</td>
<td>$m \leftarrow$ length(S)</td>
</tr>
<tr>
<td>3: for $i \leftarrow$ 0 to n do</td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td>$ML_i \leftarrow$ false</td>
</tr>
<tr>
<td>5: for $j \leftarrow$ 0 to m do</td>
<td></td>
</tr>
<tr>
<td>6: if $L_i \equiv S_j$ then</td>
<td></td>
</tr>
<tr>
<td>7:</td>
<td>$ML_i \leftarrow$ true</td>
</tr>
<tr>
<td>8:</td>
<td>$com \leftarrow com + 1$</td>
</tr>
<tr>
<td>9: break</td>
<td></td>
</tr>
<tr>
<td>10: end if</td>
<td></td>
</tr>
<tr>
<td>11: end for</td>
<td></td>
</tr>
<tr>
<td>12: end for</td>
<td></td>
</tr>
<tr>
<td>13: return</td>
<td>M and com</td>
</tr>
</tbody>
</table>

The time complexity of algorithm 3 is $O(nm)$, where n is the length of L and m is the length of S. The algorithm 3 implementation is not optimal and a better time complexity could be achieved with an optimized version of the `ismember` function. The time complexity was reduced by creating a function that uses a variation of the Quick-
sort algorithm to create a sorted index table of list \(L \), which is then used by a binary search algorithm to find occurrences of \(S_i \) in \(L \). A prerequisite for using the optimized \textit{ismember} function, shown by algorithm 4, is that list \(L \) does not contain duplicates. The binary search has a worst case time complexity of \(O(m \log n) \) and the indexing function has a worst case time complexity of \(O(n^2) \). List \(L \) is shuffled in every iteration, which will cause the actual time complexity of the indexing method to become the average time complexity \(O(n \log n) \). This will give an average time complexity of \(O((n + m) \log n) \) for the optimized version of \textit{ismember}. The GSEA implementation using the optimized \textit{ismember} function will be referred to as the optimized C implementation.

Algorithm 4 Pseudocode of optimized \textit{ismember} function

\begin{verbatim}
Require: length(L) > 0, length(S) > 0
1: n ← length(L)
2: m ← length(S)
3: I = index(L)
4: up ← n
5: low ← 0
6: while (up - low) ≥ 0 do
7: mid ← (up + low)/2
8: if \(L_{I_{mid}} \equiv S_i \) then
9: \(ML_{I_{mid}} \leftarrow \text{true} \)
10: com ← com + 1
11: break
12: else
13: if \(L_{I_{mid}} > S_i \) then
14: low ← mid + 1
15: else
16: up ← mid - 1
17: end if
18: end if
19: end while
20: return \(M \) and com
\end{verbatim}

Another Matlab routine that had to be implemented for the regular C and OpenCL implementations was the \textit{randperm} function that is used to shuffle the list \(L \) when generating a null model. The Matlab \textit{randperm} function uses the \textit{rand} function, which is set to use a \textit{Linear Congruential Generator} (LCG). The C language implementation of the \textit{randperm} routine was based upon Knuth’s shuffling algorithm 5 [41]. Algorithm
5 is also known as Fisher-Yates shuffle and it has a linear time complexity $O(n)$. In both the regular C language and OpenCL implementations the random numbers were generated on the host device using the C language library function `rand` that also uses a LCG.

Algorithm 5 Pseudocode of Knuth’s shuffle

<table>
<thead>
<tr>
<th>Require:</th>
<th>length(X) > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: $n \leftarrow \text{length}(X)$</td>
<td></td>
</tr>
<tr>
<td>2: for $i \leftarrow n - 1$ to 1 do</td>
<td></td>
</tr>
<tr>
<td>3: $e \leftarrow \text{rand()} % i$</td>
<td></td>
</tr>
<tr>
<td>4: swap(X_i, X_e)</td>
<td></td>
</tr>
<tr>
<td>5: end for</td>
<td></td>
</tr>
<tr>
<td>6: return X</td>
<td></td>
</tr>
</tbody>
</table>

Two slightly different OpenCL implementations were made of the GSEA algorithm. In the first implementation the `ismember` function is executed by the OpenCL compute device while the remainder of the algorithm is executed by the host device. The algorithm used by the OpenCL C `ismember` kernel is based upon algorithm 3 with a few modifications due to restrictions imposed by the OpenCL standard. The `ismember` kernel code is given in listing 7.2. The `strcmp` function used by the regular C language implementation had to be replaced with a custom implementation as the C99 library functions are not supported by OpenCL C. In addition OpenCL C does not allow pointers to pointers as kernel arguments and therefore all gene identifiers had to be passed to the kernel as long character arrays accompanied by integer arrays containing offsets into the character array. The boundary values, i.e. the lengths of the offset arrays, needed in the kernel are also passed to the kernel as arguments. The boolean list ML indicating matches is implemented using an array of unsigned integers. This solution was selected to maintain backwards compatibility with the OpenCL 1.0 core functionality. The first implementation will be referred to as the standard OpenCL implementation.

The second implementation is an extension to the first implementation as it executes both the `ismember` and `calculateES` functions on the GPU. The OpenCL C `calculateES` kernel is shown in listing 7.1. The `calculateES` function has however strong data dependencies due to the two running sums and cannot be parallelized. The `calculateES` kernel is executed by one work-item and as such is not expected to perform
better than on the CPU. The whole GSEA algorithm is however expected to perform
tbetter as the amount of data transferred over the PCIe bus is minimized as only one
float is read back to the host instead of \(n \) integers. The integer list \(ML \) produced by
the \texttt{ismember} kernel is not read to the host memory space in between the \texttt{ismember}
and \texttt{calculateES} kernel functions. The only differences between the regular C imple-
m entation and the OpenCL C implementation of \texttt{calculateES} is that the calculation of
common elements has been brought into the \texttt{calculateES} function and that the scalar
floating point variables used by the regular C implementation have been combined
to a \texttt{float2} vector. The GSEA implementation that executes both the \texttt{ismember}
and \texttt{calculateES} functions on the GPU will be referred to as the optimized OpenCL imple-
m entation.

```c
__kernel void calculateES(
__global unsigned int* match,
unsigned int matchLen,
__global float* out)
{

float2 tpr = (float2)0; // s0 = value of i, s1 = value of i-1
float2 fpr = (float2)0; // s0 = value of i, s1 = value of i-1
float2 es = (float2)0; // s0 = new contestant, s1 = current

int i = 0;
unsigned int numCom = 0;
while (i < matchLen) {
    numCom += match[i];
    i++;
}
for (i = 0; i < matchLen; i++) {
    tpr.s0 = match[i] ? tpr.s1 + 1.0/numCom : tpr.s1;
    fpr.s0 = match[i] ? fpr.s1 : fpr.s1 + 1.0/(matchLen - numCom);
    es.s0 = tpr.s0 - fpr.s0;
    es.s1 = fabs(es.s0) > fabs(es.s1) ? es.s0 : es.s1;
    tpr.s1 = tpr.s0;
    fpr.s1 = fpr.s0;
}
*out = es.s1;
}
```

Listing 7.1: \textit{CalculateES} OpenCL C kernel

50
Listing 7.2: Ismember OpenCL C kernel

The host code of the OpenCL application follows the regular program flow of figure 6.2. The OpenCL platform layer objects are created at the initialization phase of the application, before reading the gene identifiers from the data file. All gene identifiers are read from the data file and sorted alphabetically using Quicksort. After removing all duplicates the list contains approximately 30500 unique gene identifiers. From the sorted list an array corresponding to list L is created by selecting the n first gene identi-
fiers. A second array corresponding to set S is created by randomly selecting elements from the array corresponding to list L. The arrays are passed to the different implementations of the GSEA algorithm together with p, the number of permutations. In the OpenCL implementations the memory buffers, allocated from device memory, and the kernels are compiled before they are needed the first time and released after they have been used the last time. The arrays containing the gene identifiers are released before the application exits.

The correctness of the regular C and OpenCL implementations compared to the original Matlab version was verified by passing the same input data to all three implementations and comparing the generated outputs. To properly compare and verify the correctness of the results a trivial shuffling method had to be implemented for all versions. The trivial shuffling conforms to Knuth’s shuffle, but instead of selecting a random element e as shown in algorithm 5 the element X_{i-1} was selected. The trivial shuffling method was needed as the sequence of random numbers generated by Matlab and the C library differed even if same seed value was used.

7.3 Test environment

A small test environment consisting of three grid workers and a grid server was used to measure performance of the GSEA implementations. Worker 1 and Worker 2 were purposely selected to represent the high-end selection of graphics cards from the two leading brands. In addition Worker 3 was included in the test set to represent the old generation mainstream graphics cards capable of GPU computation. At the moment of writing the ATI Radeon HD 5870 graphics card and the Nvidia GeForce GTX 280 represented the second to newest hardware architectures from AMD and Nvidia. The hardware architecture of the Geforce 8600 GT is the first GPU architecture to support GPU computation. Table 7.1 shows a summary of the workers’ features.

If the graphics cards are excluded, Worker 1 and Worker 2 have almost identical hardware and software setup. Worker 1 was set up, as described in section 4.2.1, with ATI Stream SDK version 2.2 and Catalyst driver suite version 10.8. Worker 2 was set up to use the ForceWare 258.19 release candidate development drivers with OpenCL 1.1 support, while Worker 3 was setup to use Forceware 195.36.15 display drivers with OpenCL 1.0 support. Worker 2 has compute capability 1.3 while Worker 3 has compute capability 1.1.
7.4 Test results

The performance of the different GSEA implementations were measured with two distinct test sets that were modeled to correspond to real life usage. In the first test set the length of gene list L was increased in steps of 5000 starting from 0 and ending at 30000 gene identifiers. The size of set S was held constant at 500 gene identifiers. In the second set of tests the length of gene list L was held constant at 15000 gene identifiers, while the size of gene set S was increased in steps of 250 starting from 0 and ending at 1500 gene identifiers. In both test sets the number of permutations was kept at a constant 1000.

All test runs were repeated five times to assure that possible peaks in resource usage would not distort the results. The local control code as well as the OpenCL host application were implemented in C and compiled with level two optimizations. During test runs the `techila_multithreading` and `techila_do_not_expire` parameters were set to true to ensure that every worker executed only one job at a time and that an allocated job would not be reallocated. The tests were run at night time when no one was using the computers from the console and the CPU load was below 5%. When the test results where examined only minimal fluctuations were present.

The execution times are given in tabular form in appendix A.1. The execution times used in the graphs and the appendix tables are the minimum values of the five test runs. The GSEA algorithm execution times were measured of all algorithm 1 implementations using the C wall time. The OpenCL platform, device and context object
creation is not included in the measured execution times. The OpenCL initialization took approximately 100-120 ms. In addition execution times were measured of GSEA algorithm subsections, more precisely the ismember and calculateES functions. Because these functions are invoked \(p + 1 \) times the execution times of the functions are minimums of the average execution times, i.e. \(\min(\text{avg}_k(p + 1)) \) where \(k \in [1, 5] \). In the standard OpenCL implementation the subsection execution time is measured over the ismember function, while all other regular C and OpenCL implementation subsection execution times also include the calculateES function. The subsection execution times of regular C functions were measured using C wall time, but the OpenCL kernel function time measurements were done with the OpenCL built-in profiler. The built-in profiler was chosen because of its higher accuracy and its consistency across power states. The execution time of the Matlab implementation was measured with the built-in timer in Matlab 2007a. No discrete way was found to measure the execution time of the ismember function and the calculation of the enrichment score in Matlab due to the structure of the code and therefore this information is missing from graphs 7.2 and 7.4.

7.4.1 Overall comparison of performance

In this subsection the results yielding from executing the Matlab, regular C and OpenCL implementations on Worker 2 are compared. Worker 2 was chosen for this purpose as it performed better than the two other workers. Figure 7.1 shows the minimum execution times of the different implementations of algorithm 1 when the length of \(L \) is increased. The performance of the regular C and the OpenCL implementations that use the algorithm in 3 differ greatly depending on which type of processing unit is used. It is clear that algorithm 3 performs poorly on the CPU but excels on the GPU, as shown by figure 7.1. The standard C implementation is over ten times slower than the corresponding standard OpenCL implementation. The straight forward standard C implementation performs only slightly worse than the optimized OpenCL implementation.
Figure 7.1: Execution times of GSEA algorithm implementations on Worker 2 when the length of L is increased and $m = 500$. The OpenCL implementations utilize the GPU.

being less than a second slower in most cases. For the smallest problem sizes, $n = 5000$ and $n = 10000$, the optimized C implementation is faster than the standard OpenCL implementation that calculates the `ismember` function on the GPU.

Sequential algorithms, such as that of algorithm 2, seldom perform better on the GPU but may yield performance gain by eliminating costly data transfers from graphics card DRAM to host memory over the PCIe bus and vice versa. The impact of transferring data between the host memory and the graphics card DRAM can be seen by comparing execution times of the standard OpenCL implementation and the optimized OpenCL implementation. By subtracting the subsection execution time of the standard OpenCL implementation, i.e. execution time of function `ismember`, from the subsection execution time of the optimized OpenCL implementation we get the execution time of function `calculateES` on the GPU. The median of the performance difference between the standard OpenCL implementation and the optimized OpenCL implementation is 19.5%. In the standard C implementation the `calculateES` function constitutes less than 2% of the subsection execution time. From these values as well as figure 7.2 it can be concluded that `calculateES` performs a lot worse on the GPU than on the CPU. Despite this figure 7.1 shows an overall performance gain.
Figure 7.2: Execution times of GSEA algorithm subsections on Worker 2 when the length of L is increased and $m = 500$. The OpenCL implementations utilize the GPU.

Figure 7.3: Execution times of GSEA algorithm implementations on Worker 2 when the size of S is increased and $n = 15000$. The OpenCL implementations utilize the GPU.
The second set of tests evaluated the impact of increasing the size of set S, while the length of list L was kept constant at $n = 15000$ gene identifiers. The OpenCL implementations as well as the optimized C implementation are not affected by the increasing size of S. Figure 7.3 shows that the optimized OpenCL implementation performs the computations on average 10.9 times faster than the Matlab implementation. The optimized C implementation is in this case also only slightly slower than the optimized OpenCL implementation, but still on average 8.4 times faster than the Matlab implementation. The execution time for the standard C implementation on the other hand was significantly affected by the increase in size of S. The slope of the standard C implementation in figure 7.3 indicate that the execution time increases with approximately 14 seconds for every 100 gene identifiers added to set S.

When analyzing the execution times of the algorithm subsections in figure 7.4 it can be noted that the optimized C implementation, which uses ismember algorithm 4, performs better than both OpenCL implementations. The execution times of the optimized C implementation are all within a half millisecond, while the optimized OpenCL implementation’s execution times range from 17.2 ms to 32.71 ms.

![Figure 7.4: Execution times of GSEA algorithm subsections on Worker 2 when the size of S is increased and m = 500. The OpenCL implementations utilize the GPU.](image)
7.4.2 *Comparison of OpenCL performance*

The previous section compared the results of implementations using different languages and different frameworks. This chapter focuses on the differences in OpenCL performance between the graphics cards Geforce GTX 280, Geforce 8600GT and Radeon 5870. The aim of this section is to demonstrate how the performance varies depending on which graphics card is used.

![Graph showing performance comparison](image)

Figure 7.5: Total execution times of the GSEA algorithm OpenCL implementations on different GPUs when the length of L is increased and $m = 500$.

Figures 7.5 and 7.7 show a significant difference in performance between the newer cards and the first generation Geforce 8600 GT. The Geforce GTX 280 and Radeon HD 5870 are less dependent on memory coalescing than the 8600 GT graphics card. The hardware architecture of the Nvidia Geforce 8600GT graphics card performs poorly for unaligned and random memory access patterns that are exhibited by the `ismember` kernel. Furthermore the Geforce 8600GT card has 7.5 times less processing elements than the Geforce GTX 280. Figure 7.5 also shows that minimizing the data transfers over the PCIe bus causes the performance to decrease dramatically for the Geforce 8600 GT and ATI Radeon HD 5870 graphics cards. The optimized OpenCL implementation is almost three times slower on the ATI Radeon 5870 and 20% slower on the Geforce 8600 GT than the standard OpenCL implementation.
On the Geforce GTX 280 the optimized OpenCL implementation is however on average 21.8% faster than the standard OpenCL implementation.

Even though the performance differs greatly for the complete GSEA algorithm, figure 7.6 shows that the Radeon 5870 and Geforce GTX 280 graphics card subsection execution times are almost equal. The *ismember* kernel is on average 93% faster on the Radeon HD 5870 than on the GTX 280, but when the *calculateES* kernel is included in the execution time the Radeon HD 5870 is on average only 14% faster. When the kernel execution times are compared to the total GSEA algorithm execution time it can be concluded that the AMD OpenCL runtime performs poorly for small data transfers. This finding was verified by comparing the gprof profiling results of the optimized OpenCL implementation on both *Worker 1* and *Worker 2*. The Geforce 8600GT kernel execution times grow almost at the same rate as the total GSEA execution time in figure 7.5, as expected.

Figure 7.7 compares the total execution times of the GSEA implementations when the size of set S is increased. The Geforce GTX 280 is not affected by the increased size of S at all and the execution times of Radeon 5870 increase only sublinearly.
Figure 7.7: Total execution times of the GSEA algorithm OpenCL implementations on different GPUs when the size of S is increased and $n = 15000$.

Figure 7.8: Subsection execution times of GSEA algorithm OpenCL implementations on different GPUs when the size of S is increased and $n = 15000$.

with S. The Radeon HD 5870 performs the kernel functions faster than the GeForce GTX 280 but slower when the total execution time of the GSEA algorithm is
considered. The Radeon 5870 performs the \textit{ismember} kernel over twice as fast as the Geforce GTX 280 for all size of S. The difference in execution times of the optimized OpenCL implementation between the Radeon 5870 and Geforce GTX 280 increases when the size of set S is increased. From this can be concluded that the Radeon 5870 performs sequential code better than the Geforce cards. Even here the linear increase in kernel execution times for the Geforce 8600GT is reflected in the total execution time of the GSEA algorithm.
8 Conclusions

The purpose of this thesis is to present the key concepts of GPU computation and investigate how the Techila Grid could be extended to support GPU computation. Besides describing the software and hardware requirements the process of implementing a Techila grid OpenCL application is described. It was shown that the current version of the Techila Grid can be extended to support OpenCL with both AMD and Nvidia graphics cards. The operating system constraints however limit the support almost completely to Linux platforms, as only older Windows and the newer OS X platforms are supported. Some of these constraints could however be bypassed, especially OpenCL computation on AMD graphics cards under Linux would not have been possible if a way to bypass the X session dependency had not been found. Another aspect that was found to complicate a large scale deployment of OpenCL in Techila grid is the structure of the OpenCL runtime implementations and the ICD model. These make library management through grid bundles infeasible and the grid clients have to be configured manually.

From a code development point of view the best course is to implement the application first as a regular C or C++ application and only after verifying its correctness the application should be ported to OpenCL. This way much unnecessary work can be avoided when OpenCL deployment is a realistic possibility. This is true especially if only small compute intensive sections of the application are ported to OpenCL. From a grid user’s point of view only little extra effort is required by OpenCL applications compared to regular C applications after the grid has been configured. In most cases only three additional parameters have to be defined in the local control code.

The results of the case study were in line with what was expected. Because the case study problem was not very compute intensive the OpenCL implementations were only slightly faster than the optimized C language implementation when the time taken to initialize the OpenCL platform and compute device was not included in the execution times. When that time was included in the execution times the OpenCL implementa-
tions were in most cases significantly slower than the C and Matlab implementations. In addition to comparing the OpenCL implementations against the C language implementations, also a comparison between different GPUs was made. From this comparison one can conclude that only high-end graphics cards should be used for GPU computation in order to gain a performance increase.
BIBLIOGRAPHY

64

SAMMANFATTNING

ALLMÄNNA BERÄKNINGAR PÅ GRAFIKPROCESSORER INOM GRIDDTEKNIK

Introduktion

Inom högeffektiva datorberäkningar pågår konstant forskning i hur prestandan av existerande system kan utökas. Ett sätt att öka prestandan är att beräkna individuellt parallella problem på grafikprocessorer. Syftet av detta diplomarbete är att undersöka hurdana egenskaper sådana problem bör ha för att dra nytta av den parallellism som grafikprocessornas hårdvara erbjuder. Tyngpunkten av arbetet ligger vid att undersöka hur den kommersiellt erbjudna Techila griddtekniken kan utvidgas att stöda allmänna beräkningar på grafikprocessorer, och vilka aspekter som bör tas i betraktande under utvecklingen av program som utnyttjar griddens grafikprocessorer. Speciell uppmärksamhet ges åt hårdvaru arkitekturen och programvaru utvecklingen eftersom applikationer som utför beräkningar på grafikprocessorer skiljer sig markant från utvecklingen av traditionella program. I detta sammanhang används Open Compute Language (OpenCL) standarden för allmänna beräkningar på processor och accelerator för att beskriva programutvecklingen och arkitekturen.

Allmänna beräkningar på grafikprocessorer

Allmänna beräkningar på grafikprocessorer är en term som används för beräkningar som utnyttjar grafikkortens processor för att utföra allmänna beräkningar. En grafikprocessor är kapabel att utföra hundratals räkneoperationer parallellt, i motsats till en centralprocessor som vanligtvis utför beräkningarna sekventiellt. Sedan slutet av 1990-talet har grafikprocessornas utvecklats från hårdvaruenheter med statisk bearbetning

Systemarkitektur

Hårdvaru- och mjukvarukrav

Varje griddklient måste ha en version av OpenCL biblioteket installerat för att kunna köra OpenCL kod. De två största grafikprocessortillverkarna AMD och Nvidia erbjuder kostnadsfritt bibliotek som stöder de flesta av deras grafikprocessorer. Av AMDs grafikkort är 4000 och 5000 serien understödda och av Nvidias grafikkort är alla kort nyare än 8000-serien understödda. AMDs OpenCL bibliotek erbjuder även stöd för att använda centralprocessorer med **Streaming Single Instruction, Multiple Data Extensions 2** (SSE2) stöd som beräkningsapparat.

Nyare Windows operativsystem har inbyggda mekanismer som övervakar grafikkortens lyhördhet. Dessa mekanismer måste inaktiveras ifall program med lång körtid skall exekveras på grafikprocessorn. Ifall kod körs oupphörligt i 2 sekunder på grafikprocessorn under Windows XP eller 5 sekunder under Windows Vista och Windows 7 tror operativsystemet att grafikkortet inte svarar och försöker då omställa drivrutinerna för grafikkortet. Detta i sin tur leder till att beräkningarna avbryts tvärt, vilket inte är önskvärt.

Programutveckling i OpenCL

Utvecklingen av ett OpenCL program som körs på gridden skiljer sig inte mycket från utvecklingen av ett OpenCL program som körs lokalt på en dator, men eftersom griddklienterna har grafikkort med varierande egenskaper måste detta tas i beaktande under utvecklingen. Speciell uppmärksamhet bör fästas vid mängden globalt minne och den största stödda rutnätet. Inom vissa beräkningsproblem krävs även flyttalsoperationer med dubbelprecision, en egenskap som inte tillhör OpenCL:s kärnfunktionalitet. En plattform kan dock stöda dubbelprecisionoperationer genom utvidgningar av OpenCL standarden. Förutom de tidigare nämnda sakerna bör utvecklaren även se till att klienternas OpenCL bibliotek är av samma version eller nyare än den som använts för att kompilera koden till en binär. All denna information kan frågas av klientsystemet med hjälp av OpenCL:s biblioteksrutiner `clGetDeviceInfo`.

OpenCL kernelkoden som körs på en grafikprocessor sparas vanligtvis i en skild källkodsfil, som kompileras av OpenCL biblioteket under exekveringen av OpenCL binären. Den lokala kontrollkoden måste därför se till att denna fil inkluderas i samma griddpaket som OpenCL binären. Den lokala kontrollkoden bör även berätta åt Linux griddklienterna med AMD grafikkort var de kan hitta OpenCL-biblioteket och vilken X-session biblioteket skall använda.

Fallstudie

Prestandan och användbarheten av OpenCL i Techila gridd undesökttes genom att utföra en fallstudie. Till fallstudie valdes GSEA metoden⁴ som beräknar korrelationer mellan en ordnad lista av gener, \(L \), och en grupp av gener, \(S \), med någon på förhand känd egenskap. En korrelation mellan \(S \) och \(L \) innebär att majoriteten av de gemensamma generna förekommer i början eller slutet av \(L \).

Den ursprungliga versionen av metoden erhölls i Matlab⁵, från vilket den översattes till C och OpenCL. Prestandan av de olika versionerna jämfördes inom en liten testomgivning med tre griddklienter, av vilka alla hade olika grafikkort. Körtiden mätttes för alla implementerar av GSEA metoden då längden för \(L \) ökades från 5000 till 30000 gener i steg av 5000, då storleken för \(S \) var 500. Ur körtidsmätningarna framgick att OpenCL implementationen körd på Geforce GTX 280 grafikprocessorn var 10,9 gånger snabbare än Matlab implementationen, medan den optimerade C implementationen var endast 8,4 gånger snabbare än Matlabimplementationen. I dessa mätningar är inte tiden det tog att förbereda OpenCL plattformen och beräkningsapparaten medräknad. Förberedelserna tog cirka 100-120 ms. Ifall denna tid tas i betraktande är OpenCL implementationen som regel långsammare än Matlab och C implementationerna för de flesta problemstorlekar.

Resultat

A. APPENDICES

A.1 Case study execution times

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Optimized</th>
<th>Standard C</th>
<th>Optimized C</th>
<th>Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>2.13</td>
<td>1.59</td>
<td>20.21</td>
<td>1.77</td>
<td>13.59</td>
</tr>
<tr>
<td>10000</td>
<td>3.76</td>
<td>3.14</td>
<td>57.06</td>
<td>3.72</td>
<td>29.59</td>
</tr>
<tr>
<td>15000</td>
<td>5.41</td>
<td>4.53</td>
<td>71.75</td>
<td>5.65</td>
<td>46.99</td>
</tr>
<tr>
<td>20000</td>
<td>6.95</td>
<td>5.85</td>
<td>80.49</td>
<td>7.55</td>
<td>69.09</td>
</tr>
<tr>
<td>25000</td>
<td>8.3</td>
<td>6.94</td>
<td>88.22</td>
<td>9.39</td>
<td>91.67</td>
</tr>
<tr>
<td>30000</td>
<td>9.88</td>
<td>8.28</td>
<td>102.27</td>
<td>11.45</td>
<td>112.28</td>
</tr>
</tbody>
</table>

Table A.1: Execution times of GSEA algorithm implementations on Worker 2 when the length of L is increased and $m = 500$. The OpenCL implementations utilize the GPU. Execution times are given in seconds.

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Optimized</th>
<th>Standard C</th>
<th>Optimized C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>5.13</td>
<td>9.65</td>
<td>19.94</td>
<td>1.51</td>
</tr>
<tr>
<td>10000</td>
<td>5.84</td>
<td>14.88</td>
<td>56.48</td>
<td>3.22</td>
</tr>
<tr>
<td>15000</td>
<td>6.60</td>
<td>20.15</td>
<td>70.91</td>
<td>4.86</td>
</tr>
<tr>
<td>20000</td>
<td>8.15</td>
<td>26.29</td>
<td>79.40</td>
<td>6.45</td>
</tr>
<tr>
<td>25000</td>
<td>8.60</td>
<td>31.35</td>
<td>86.86</td>
<td>8.09</td>
</tr>
<tr>
<td>30000</td>
<td>9.55</td>
<td>38.55</td>
<td>100.62</td>
<td>9.86</td>
</tr>
</tbody>
</table>

Table A.2: Execution times of GSEA algorithm subsections on Worker 2 when the length of L is increased and $m = 500$. The OpenCL implementations utilize the GPU. Execution times are given in milliseconds.
Table A.3: Execution times of GSEA algorithm implementations on Worker 2 when the size of S is increased and $n = 15000$. The OpenCL implementations utilize the GPU. Execution times are given in seconds.

<table>
<thead>
<tr>
<th>S</th>
<th>Standard OpenCL</th>
<th>Optimized OpenCL</th>
<th>Standard C</th>
<th>Optimized C</th>
<th>Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>5.42</td>
<td>4.57</td>
<td>35.59</td>
<td>5.58</td>
<td>48.37</td>
</tr>
<tr>
<td>500</td>
<td>5.41</td>
<td>4.53</td>
<td>71.75</td>
<td>5.65</td>
<td>46.99</td>
</tr>
<tr>
<td>750</td>
<td>5.41</td>
<td>4.51</td>
<td>107.08</td>
<td>5.75</td>
<td>49.76</td>
</tr>
<tr>
<td>1000</td>
<td>5.41</td>
<td>4.5</td>
<td>142.33</td>
<td>5.84</td>
<td>49.89</td>
</tr>
<tr>
<td>1250</td>
<td>5.33</td>
<td>4.55</td>
<td>176.64</td>
<td>5.92</td>
<td>50.59</td>
</tr>
<tr>
<td>1500</td>
<td>5.35</td>
<td>4.52</td>
<td>213.14</td>
<td>6.02</td>
<td>51.32</td>
</tr>
</tbody>
</table>

Table A.4: Execution times of GSEA algorithm subsections on Worker 2 when the size of S is increased and $m = 500$. The OpenCL implementations utilize the GPU. Execution times are given in milliseconds.

<table>
<thead>
<tr>
<th>S</th>
<th>Standard OpenCL</th>
<th>Optimized OpenCL</th>
<th>Standard C</th>
<th>Optimized C</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>3.63</td>
<td>17.20</td>
<td>34.78</td>
<td>4.73</td>
</tr>
<tr>
<td>500</td>
<td>6.60</td>
<td>20.15</td>
<td>70.91</td>
<td>4.87</td>
</tr>
<tr>
<td>750</td>
<td>9.79</td>
<td>23.33</td>
<td>106.19</td>
<td>4.94</td>
</tr>
<tr>
<td>1000</td>
<td>12.88</td>
<td>26.46</td>
<td>141.43</td>
<td>5.08</td>
</tr>
<tr>
<td>1250</td>
<td>16.03</td>
<td>29.59</td>
<td>175.75</td>
<td>5.15</td>
</tr>
<tr>
<td>1500</td>
<td>19.16</td>
<td>32.71</td>
<td>212.19</td>
<td>5.04</td>
</tr>
</tbody>
</table>

Table A.5: Total execution times of the GSEA algorithm OpenCL implementations on different GPUs when when the length of L is increased and $m = 500$. Execution times are given in seconds.

<table>
<thead>
<tr>
<th>L</th>
<th>Radeon HD 5870</th>
<th>Geforce 280 GTX</th>
<th>Geforce 8600 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Optimized</td>
<td>Standard</td>
</tr>
<tr>
<td>5000</td>
<td>5.46</td>
<td>10.62</td>
<td>2.13</td>
</tr>
<tr>
<td>10000</td>
<td>7.26</td>
<td>17.92</td>
<td>3.76</td>
</tr>
<tr>
<td>15000</td>
<td>9.31</td>
<td>25.25</td>
<td>5.41</td>
</tr>
<tr>
<td>20000</td>
<td>12.97</td>
<td>33.95</td>
<td>6.95</td>
</tr>
<tr>
<td>25000</td>
<td>14.08</td>
<td>40.38</td>
<td>8.3</td>
</tr>
<tr>
<td>30000</td>
<td>16.02</td>
<td>47.81</td>
<td>9.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>Radeon HD 5870</th>
<th>Geforce 280 GTX</th>
<th>Geforce 8600 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Optimized</td>
<td>Standard</td>
</tr>
<tr>
<td>5000</td>
<td>26.79</td>
<td>32.03</td>
<td>64.18</td>
</tr>
<tr>
<td>10000</td>
<td>43.87</td>
<td>54.68</td>
<td>79.18</td>
</tr>
<tr>
<td>15000</td>
<td>64.18</td>
<td>80.59</td>
<td>95.89</td>
</tr>
<tr>
<td>20000</td>
<td>79.18</td>
<td>101.12</td>
<td>116.05</td>
</tr>
</tbody>
</table>

74
Table A.6: Subsection execution times of the GSEA algorithm OpenCL implementations on different GPUs when the length of L is increased and $m = 500$. Execution times are given in milliseconds.

<table>
<thead>
<tr>
<th>L</th>
<th>Radeon HD 5870</th>
<th>Geforce 280 GTX</th>
<th>Geforce 8600 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Optimized</td>
<td>Standard</td>
</tr>
<tr>
<td>5000</td>
<td>2.54</td>
<td>7.46</td>
<td>5.13</td>
</tr>
<tr>
<td>10000</td>
<td>2.82</td>
<td>12.67</td>
<td>5.84</td>
</tr>
<tr>
<td>15000</td>
<td>3.20</td>
<td>17.95</td>
<td>6.60</td>
</tr>
<tr>
<td>20000</td>
<td>4.79</td>
<td>24.48</td>
<td>8.15</td>
</tr>
<tr>
<td>25000</td>
<td>4.66</td>
<td>29.28</td>
<td>8.60</td>
</tr>
<tr>
<td>30000</td>
<td>4.95</td>
<td>34.49</td>
<td>9.55</td>
</tr>
</tbody>
</table>

Table A.7: Total execution times of the GSEA algorithm OpenCL implementations on different GPUs when the size of S is increased and $n = 15000$. Execution times are given in seconds.

<table>
<thead>
<tr>
<th>S</th>
<th>Radeon HD 5870</th>
<th>Geforce 280 GTX</th>
<th>Geforce 8600 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Optimized</td>
<td>Standard</td>
</tr>
<tr>
<td>250</td>
<td>7.09</td>
<td>23.37</td>
<td>5.42</td>
</tr>
<tr>
<td>500</td>
<td>9.31</td>
<td>25.25</td>
<td>5.41</td>
</tr>
<tr>
<td>750</td>
<td>11.2</td>
<td>26.88</td>
<td>5.41</td>
</tr>
<tr>
<td>1000</td>
<td>12.52</td>
<td>28.65</td>
<td>5.41</td>
</tr>
<tr>
<td>1250</td>
<td>13.75</td>
<td>30.17</td>
<td>5.33</td>
</tr>
<tr>
<td>1500</td>
<td>16.38</td>
<td>32.08</td>
<td>5.35</td>
</tr>
</tbody>
</table>

Table A.8: Subsection execution times of the GSEA algorithm OpenCL implementations on different GPUs when the size of S is increased and $n = 15000$. Execution times are given in milliseconds.

<table>
<thead>
<tr>
<th>S</th>
<th>Radeon HD 5870</th>
<th>Geforce 280 GTX</th>
<th>Geforce 8600 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Optimized</td>
<td>Standard</td>
</tr>
<tr>
<td>250</td>
<td>1.71</td>
<td>16.45</td>
<td>3.63</td>
</tr>
<tr>
<td>500</td>
<td>3.20</td>
<td>17.95</td>
<td>6.60</td>
</tr>
<tr>
<td>750</td>
<td>4.58</td>
<td>19.33</td>
<td>9.79</td>
</tr>
<tr>
<td>1000</td>
<td>6.04</td>
<td>20.78</td>
<td>12.88</td>
</tr>
<tr>
<td>1250</td>
<td>7.47</td>
<td>22.22</td>
<td>16.03</td>
</tr>
<tr>
<td>1500</td>
<td>8.97</td>
<td>23.72</td>
<td>19.16</td>
</tr>
</tbody>
</table>

75